Nature子刊:纳米光遗传学技术,实现安全精准的细胞免疫疗法
内容来源:生物世界
嵌合抗原受体T细胞(CAR-T)免疫疗法是近年来快速发展的一种新型肿瘤治疗方法。嵌合抗原受体(CAR)是通过细胞工程手段,在 T 细胞表面表达抗原受体蛋白,并能结合特定肿瘤抗原,激活T细胞的肿瘤杀伤性能,实现细胞免疫治疗的目的。
CAR-T 细胞免疫疗法在针对CD19+B细胞恶性肿瘤的治疗中取得了显著疗效,已被美国FDA和欧洲药品管理局批准用于治疗特定适应症。日前,国家药品监督管理局也已批准了两款CAR-T细胞治疗产品于国内上市。
然而,作为一种新兴的肿瘤治疗手段,CAR-T细胞免疫疗法仍然受制于明显的安全性问题,这主要是由于缺乏对T 细胞活性定量、定时、定点地精准操控。例如,在半数以上接受治疗的患者中,CAR-T细胞免疫治疗会引起细胞因子释放综合征、神经毒性或者对健康细胞存在“在靶/脱肿瘤”的细胞毒性。因此,开发一种能够对CAR-T细胞在时间和空间上精准操控的方法,对于实现安全精准的细胞免疫治疗至关重要。
2021年10月25日,美国得州农工大学周育斌教授团队、黄韵教授团队与麻省大学医学院韩纲教授团队合作,在 Nature 子刊 Nature Nanotechnology 在线发表了题为:Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety 的研究论文。
这一突破性创新研究成果,利用纳米光遗传学技术实时体外无线操控光敏感嵌合抗原受体T细胞(LiCAR-T),实现了安全精准的细胞免疫疗法。
图: LiCAR-T细胞实现安全可控的细胞免疫疗法
为了实现对CAR-T细胞的时空精准操控,得州农工大学周育斌教授团队与麻省大学医学院韩纲教授团队及得州农工大学黄韵教授团队合作,开发了一种基于纳米光遗传学技术的红外光无线操控手段,对CAR-T细胞进行可控激活,实现了安全精准的细胞免疫疗法。
纳米光遗传学技术是将纳米光子学与光遗传学技术相结合,利用纳米材料作为原位光转换器,将长波长激发光转换为可激活特定离子通道的刺激,如短波长可见光或热刺激等,通过对离子通道的无线激活,引发特定细胞行为。
该合作研究团队在纳米光遗传学领域具有深厚的技术积累。早在2015年,该合作团队利用上转换纳米颗粒将红外光转换为蓝光,激活树突状细胞的钙离子通道,实现了对树突状细胞下游免疫反应的无线操控。此后,该合作团队又相继实现了利用纳米光遗传学技术无线操控细胞坏死性凋亡和细胞焦亡用于肿瘤治疗,以及纳米光遗传学技术无线操控光敏蛋白用于可控免疫治疗。此前的研究为这项工作积累了可靠的技术和具有创新精神的合作团队。
图:近红外光激活的纳米光遗传学技术
在这项工作中,研究人员首先对CAR-T 细胞进行了工程化改造。研究人员将嵌合抗原受体功能区块拆分成两个模块,并在两个模块上分别安装光控组件。光控组件在蓝光激发下,将两个模块合并成一个完整的功能性嵌合抗原受体。
与传统CAR-T细胞直接被特定抗原激活相比,LiCAR-T细胞与特定抗原结合后并不会被激活,而是在蓝光的激发下,可控地激活T细胞,从而实现时空精准操控的目的。研究人员尝试了两组植物来源的光控二元异聚组件(拟南芥来源的花隐色素 2 (CRY2)/CIBN组合及燕麦来源的 light-oxygen-voltage domain 2 (LOV2)-ssrA/sspB组合)。通过一系列在细胞水平对LiCAR-T细胞的光激活功能性及暗毒性的评价,研究人员最终选择了光激活效率更高、暗毒性更低的基于燕麦LOV2组件的LiCAR-T细胞。
在验证可控免疫治疗的体外实验中,研究人员利用人源外周血单核细胞 (PBMC) 的 CD8+T 细胞为基础,设计表达了具有光控组件的LiCAR-T细胞,并发现LiCAR-T细胞在蓝光的激活下,表现出与传统CAR-T细胞相当的对特异抗原表达的肿瘤细胞的杀伤效果。而在无蓝光照射的条件下,LiCAR-T细胞并未被激活。而对于无特异抗原表达的肿瘤细胞,无论光照与否,LiCAR-T细胞均未被激活。
这些结果证实,LiCAR T 细胞能够在肿瘤抗原和光照的双重激活条件下,对肿瘤细胞产生特异且严格可控的免疫治疗反应。为了在同源小鼠肿瘤模型上验证LiCAR-T细胞的可控免疫治疗,研究人员利用小鼠的CD8+T 细胞为基础,设计表达了LiCAR-T细胞, 并获得了与基于人源CD8+T的LiCAR-T细胞一致的实验结果。