ML之RS之MF:基于简单的张量分解MF算法进行打分和推荐
ML之RS之MF:基于简单的张量分解MF算法进行打分和推荐
输出结果
先看结果
实现代码
#ML之RS之MF:基于简单的张量分解MF算法进行打分和推荐
import numpy
def matrix_factorization(R, P, Q, K, steps=5000, alpha=0.0002, beta=0.02): #(迭代次数5000、步长,正则化系数)
Q = Q.T
for step in range(steps):
for i in range(len(R)):
for j in range(len(R[i])):
if R[i][j] > 0:
eij = R[i][j] - numpy.dot(P[i,:],Q[:,j])
for k in range(K):
P[i][k] = P[i][k] + alpha * (2 * eij * Q[k][j] - beta * P[i][k])
Q[k][j] = Q[k][j] + alpha * (2 * eij * P[i][k] - beta * Q[k][j])
eR = numpy.dot(P,Q)
e = 0
for i in range(len(R)):
for j in range(len(R[i])):
if R[i][j] > 0:
e = e + pow(R[i][j] - numpy.dot(P[i,:],Q[:,j]), 2)
for k in range(K):
e = e + (beta/2) * (pow(P[i][k],2) + pow(Q[k][j],2))
if e < 0.001:
break
return P, Q.T
#读取user数据并用张量分解进行打分
#定义得分矩阵
R = [
[5,3,0,1],
[4,0,3,1],
[1,1,0,5],
[1,0,0,4],
[0,1,5,4],
]
R = numpy.array(R)
N = len(R)
M = len(R[0])
K = 2 #两个因子
P = numpy.random.rand(N,K)
Q = numpy.random.rand(M,K)
nP, nQ = matrix_factorization(R, P, Q, K)
nR = numpy.dot(nP, nQ.T)
print(nP)
print("-----------------------------")
print(nQ)
print("-----------------------------")
print(nR)
print("-----------------------------")
print(R)
赞 (0)