具体来讲,什么是继电保护呢?
研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以也称继电保护。基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。继电保护是随着电力系统的发展而发展起来的。20世纪初随着电力系统的发展,继电器开始广泛应用于电力系统的保护,这时期是继电保护技术发展的开端。最早的继电保护装置是熔断器。从20世纪50年代到90年代末,在40余年的时间里,继电保护完成了发展的4个阶段,即从电磁式保护装置到晶体管式继电保护装置、到集成电路继电保护装置、再到微机继电保护装置。随着电子技术、计算机技术、通信技术的飞速发展,人工智能技术如人工神经网络、遗传算法、进化规模、模糊逻辑等相继在继电保护领域的研究应用,继电保护技术向计算机化、网络化、一体化、智能化方向发展。19世纪的最后25年里,作为最早的继电保护装置熔断器已开始应用。电力系统的发展,电网结构日趋复杂,短路容量不断增大,到20世纪初期产生了作用于断路器的电磁型继电保护装置。虽然在1928年电子器件已开始被应用于保护装置,但电子型静态继电器的大量推广和生产,只是在50年代晶体管和其他固态元器件迅速发展之后才得以实现。静态继电器有较高的灵敏度和动作速度、维护简单、寿命长、体积小、消耗功率小等优点,但较易受环境温度和外界干扰的影响。1965年出现了应用计算机的数字式继电保护。大规模集成电路技术的飞速发展,微处理机和微型计算机的普遍应用,极大地推动了数字式继电保护技术的开发,目前微机数字保护正处于日新月异的研究试验阶段,并已有少量装置正式运行。
继电保护的基本原理
继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。
电力系统发生故障后,工频电气量变化的主要特征是:
(1)电流增大。短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。
(2)电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。
(3)电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°,而在保护反方向三相短路时,电流与电压之间的相位角则是180°+(60°~85°)。
(4)测量阻抗发生变化。测量阻抗即测量点(保护安装处)电压与电流之比值。正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。
不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。这些分量在正常运行时是不出现的。
利用短路故障时电气量的变化,便可构成各种原理的继电保护。
此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护,如瓦斯保护。
由计算机或者其他信息终端及相关设备组成的按照一定的规则和程序对信息进行收集、存储、传输、交换、处理的系统,被称为等级保护的对象,这些系统都要遵守等保2.0的相关标准。等级保护对象,主要包括基础信息网络、云计算平台/系统、大数据应用/平台/资源、物联网、工业控制系统和采用移动互联技术的系统等。
继电保护的基本要求
继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。对于作用于继电器跳闸的继电保护,应同时满足四个基本要求,而对于作用于信号以及只反映不正常的运行情况的继电保护装置,这四个基本要求中有些要求可以降低。
1)选择性
选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。
2)速动性
速动性是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流、低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性。
(1)使发电厂或重要用户的母线电压低于有效值(一般为0.7倍额定电压)。(3)中、低压线路导线截面过小,为避免过热不允许延时切除的故障。(4)可能危及人身安全、对通信系统造成强烈干扰的故障。故障切除时间包括保护装置和断路器动作时间,一般快速保护的动作时间为0.04s~0.08s,最快的可达0.01s~0.04s,一般断路器的跳闸时间为0.06s~0.15s,最快的可达0.02s~0.06s。对于反应不正常运行情况的继电保护装置,一般不要求快速动作,而应按照选择性的条件,带延时地发出信号。
3)灵敏性
灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力。能满足灵敏性要求的继电保护,在规定的范围内故障时,不论短路点的位置和短路的类型如何,以及短路点是否有过渡电阻,都能正确反应动作,即要求不但在系统最大运行方式下三相短路时能可靠动作,而且在系统最小运行方式下经过较大的过渡电阻两相或单相短路故障时也能可靠动作。系统最大运行方式:被保护线路末端短路时,系统等效阻抗最小,通过保护装置的短路电流为最大运行方式;系统最小运行方式:在同样短路故障情况下,系统等效阻抗为最大,通过保护装置的短路电流为最小的运行方式。
4)可靠性
可靠性包括安全性和信赖性,是对继电保护最根本的要求。安全性:要求继电保护在不需要它动作时可靠不动作,即不发生误动。信赖性:要求继电保护在规定的保护范围内发生了应该动作的故障时可靠动作,即不拒动。继电保护的误动作和拒动作都会给电力系统带来严重危害。即使对于相同的电力元件,随着电网的发展,保护不误动和不拒动对系统的影响也会发生变化。以上四个基本要求是设计、配置和维护继电保护的依据,又是分析评价继电保护的基础。这四个基本要求之间是相互联系的,但往往又存在着矛盾。因此,在实际工作中,要根据电网的结构和用户的性质,辩证地进行统一