生物分析专栏 | 抗体偶联药物(ADC)的药代动力学和生物分析
图2 ADC药物发展简史[The Royal Society of Chemistry, 2019]
注:数据来源于antibody society网站及[The AAPS Journal, 2020]
靶点、抗体、效应分子(payload)、linker、DAR值(DAR,drug-to-antibody ratio,抗体上所结合药物分子的个数即药物-抗体比),这5个方面是ADC药物开发需要关注的重点,也是ADC药物开发的关键要素。其中DAR值主要由linker及标记技术决定。
1. 靶点
图4 ADC可开发的实体瘤抗原靶点[British Journal of Cancer, 2016]
2. 抗体
3. 效应分子(Payload,同负载/细胞毒药物/小分子药物)
图5 ADCs的体内过程及其肿瘤免疫机制示意图[BioDrugs, 2018]
1. PK的影响因素
图6 ADC药物处置方式[The AAPS Journal, 2020]
图7 DAR值与抗肿瘤作用及清除率的关系[The AAPS Journal, 2020]
图8 ADC无(a) 和有(b) bystander effect 时的作用机制示意图[Current Drug Delivery, 2020]
1.2 药物药物相互作用
1.3 免疫原性
1.4 其它
2 分布、分解/代谢、消除特征
2.1 分布
图9 ADC的体内分布 [Pharmaceutical Research, 2017]
2.2 分解/代谢
2.3 消除
图10 不同分析物的PK曲线示意图[Pharmaceutical Research, 2015]
图11 给予ADC与单抗后体内抗体血药浓度曲线[Pharmaceutical Research, 2015]
3. 动力学模型
3.1 非房室模型(Noncompartmental Analysis, NCA)
3.2 群体药代模型(Population PK Modeling, PopPK)
图12 应用不同方法建立的ADCs的PopPK模型[The AAPS Journal, 2020]。线性单分析物模型 (a),线性和非线性清除的混合模型(b), ADC和总抗的模型 (c), ADC和游离的payload的2分析物模型 (d, e), 结合型payload和总抗 (f), 结合型payload和游离payload (g)[The AAPS Journal, 2020]
3.3 基于生理的模型(Physiologically- Based Modeling, PBPK)
3.4 基于机制的模型(Mechanism-Based Modeling)
图13 基于机制的DAR值多样化ADC模型[The AAPS Journal, 2020]
图14 循环中和分布至肿瘤组织的ADC及其payload的多维度PK模型[The AAPS Journal, 2020]
图15 ADCs的PK生物分析方法 [Bioanalysis, 2013]
1. DAR的分析
图17 表征ADCs DAR分布的方法(A)Affinity capture LC MS(B)affinity capture HIC [Bioanalysis, 2013]
2. ADCs血清/血浆定量研究
2.1 基于LBA的总抗体的测定
图18 基于LBA的生物分析(A)经典ELISA(B)ADC总抗体ELISA(C)ADC抗体偶联物ELISA. [Bioanalysis, 2013]
2.2 ADCs的偶联PK分析物
2.2.1 基于LBA的抗体偶联物的血清/血浆定量研究
2.2.2 基于LC-MS/MS的结合型小分子药物的血清/血浆定量研究
图19 结合型小分子药物的亲和捕获LC MS/MS分析(A)亲和捕获和连接裂解/ADCs消化步骤(B)蛋白沉淀和LC质谱/质谱分析步骤 [Bioanalysis, 2013]
图20 比较总抗体分析数据和抗体-药物偶联物分析数据的理论推论(A)总抗体ELISA和抗体偶联物ELISA(B)总抗体ELISA和结合型小分子药物亲和捕获LC–MS/MS [Bioanalysis, 2013]
2.3 基于LC-MS /MS的小分子药物及其代谢物的定量分析
3 ADCs的免疫原性分析
图21 ADCs的ATA检测策略示意图. [Bioanalysis, 2013]
3.1 ADCs ATA的分析
图22 ATAs检测抗体或连接药物的免疫反应模式图(A)ATA directed to antibody(B)ATA directed to linker drug [Bioanalysis, 2013]
3.2 ADCs抗药抗体中和活性分析
3.2.1 基于细胞的生物学试验(cell based assay)
3.2.2 非细胞的竞争性配体结合试验(non-cell competitive ligand-binding assay,CLBA)
- 上下滑动查看参考文献 -
参考文献
[1] David E Thurston, Paul J M Jackson, Cytotoxic Payloads for Antibody–Drug Conjugates[M]. The Royal Society of Chemistry, 2019.
[2] Nikolaos Diamantis, Udai Banerji, Antibody-drug conjugates—an emerging class of cancer treatment[J]. British Journal of Cancer, 2016: 114, 362–367.
[3] Kyoji Tsuchikama, Zhiqiang An, Antibody-drug conjugates-recent advances in conjugation and linker chemistries[J]. Protein Cell, 2018: 9(1):33–46.
[4] Kommineni N , Pandi P , Chella N , et al. Antibody drug conjugates: Development, characterization, and regulatory considerations[J]. Polymers for Advanced Technologies, 2020, 31(6):1177-1193.
[5] 高华晔, 李娴静, 钟书霖,等. 单克隆抗体药物及抗体偶联药物的药代动力学研究进展[J]. 药学与临床研究, 2019, 027(003):212-215.
[6] 郭建军, 高然, 权腾飞,等. 抗体偶联药物的药代动力学研究进展[J]. 药学学报, 2015(10):13-19.
[7] 郭建军. 单克隆抗体药物的药代动力学研究进展[J]. 中国药理学通报, v.32(02):172-176.
[8] 徐冉驰, 苗红, 郑剑恒. 抗体偶联药物吸收、分布、代谢、排泄和毒性特征及分析方法研究进展[J]. 中国新药杂志, 2019, 028(009):1087-1093.
[9] Yu B and Liu D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma[J].Journal of Hematology & Oncology, 2019, 12(1): 94.
[10] Kamath A V , Iyer S . Preclinical Pharmacokinetic Considerations for the Development of Antibody Drug Conjugates[J]. Pharmaceutical Research, 2015, 32(11):3470-3479.
[11] Zuo P. Capturing the Magic Bullet: Pharmacokinetic Principles and Modeling of Antibody-Drug Conjugates[J]. The AAPS Journal, 2020, 22:105
[12] Amani N, Dorkoosh FA and Mobedi H. ADCs, as Novel Revolutionary Weapons for Providing a Step Forward in Targeted Therapy of Malignancies[J]. Current Drug Delivery, 2020, 17: 23-51.
[13] Leung D, Wurst JM, Liu T, et al. Antibody Conjugates-Recent Advances and Future Innovations. Antibodies[J]. 2020, 9, 2;
[14] Lyon R P , Bovee T D , Doronina S O , et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index.[J]. Nature Biotechnology, 2015, 33(7):733-5.
[15] Han TH, Zhao B. Absorption, distribution, metabolism, and excretion considerations for the development of antibody-drug conjugates.[J]. Drug Metabolism & Disposition the Biological Fate of Chemicals, 2014, 42(11):1914.
[16] Eshita K , Thurber G M . Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody–Drug Conjugates[J]. BioDrugs, 2018, 32.
[17] Malik P , Phipps C , Edginton A , et al. Pharmacokinetic Considerations for Antibody-Drug Conjugates against Cancer.[J]. Pharmaceutical Research, 2017.
[18] Vezina H E , PharmD, PhD, et al. Antibody-Drug Conjugates as Cancer Therapeutics: Past, Present, and Future[J]. Journal of Clinical Pharmacology, 2017, 57 Suppl 10(2):S11.
[19] Mou S , Huang Y , Rosenbaum A . ADME Considerations and Bioanalytical Strategies for Pharmacokinetic Assessments of Antibody-Drug Conjugates[J]. Antibodies, 2018, 7(4).
[20] Hedrich W D , Fandy T E , Ashour H M , et al. Antibody–Drug Conjugates: Pharmacokinetic/Pharmacodynamic Modeling, Preclinical Characterization, Clinical Studies, and Lessons Learned[J]. Clinical Pharmacokinetics, 2017, 57(4):1-17.
[21]Shankar, G, Arkin, S, Cocea, L, et al. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations.[J]. Aaps Journal, 2014, 16(4):658-673.
[22] Surinder, Kaur, Keyang,et al. Bioanalytical assay strategies for the development of antibody-drug conjugate biotherapeutics[J]. Bioanalysis, 2013, 5(2): 201-226.
[23] Stephan J P , Kozak K R , Wong W L T . Challenges in developing bioanalytical assays for characterization of antibody-drug conjugates.[J]. Bioanalysis, 2011, 3(6):677-700.
[24] Carrasco-Triguero M , Mahood C , Milojic-Blair M , et al. Overcoming soluble target interference in an anti-therapeutic antibody screening assay for an antibody-drug conjugate therapeutic.[J]. Bioanalysis, 2012, 4(16):2013-2026.
[25] Shen B Q , Bumbaca D , Saad O , et al. Catabolic Fate and Pharmacokinetic Characterization of Trastuzumab Emtansine (T-DM1): an Emphasis on Preclinical and Clinical Catabolism[J]. Current Drug Metabolism, 2012, 13(7):-.
[26] 郭建军, 高然, 张琪,等. 抗体偶联药物分析方法的概述及进展[J]. 药物分析杂志, 2016(36):1150-1156.
[27] Carrasco-Triguero, Montserrat. Insights on the immunogenicity of antibody-drug conjugates.[J]. Bioanalysis, 2015, 7(13):1565-1568.
[28] Benjamin M , Hock, Karen, et al. Immunogenicity of Antibody Drug Conjugates: Bioanalytical Methods and Monitoring Strategy for a Novel Therapeutic Modality[J]. Aaps Journal, 2015.
[29] Beeram M , Krop I E , Burris H A , et al. A phase 1 study of weekly dosing of trastuzumab emtansine (T-DM1) in patients with advanced human epidermal growth factor 2-positive breast cancer.[J]. Cancer, 2012, 118(23).
[30] Galsky M D , Eisenberger M , Moore-Cooper S , et al. Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer.[J]. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology, 2008, 26(13):2147.
[31] Galsky M D , Eisenberger M , Moore-Cooper S , et al. Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer.[J]. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology, 2008, 26(13):2147.
[32] 宫新江, 满素勤, 邵雪,等. 抗体药物偶联物抗药抗体中和活性分析研究进展[J]. 中国新药杂志, 2019(21).
[33] Benjamin M , Hock, Karen, et al. Immunogenicity of Antibody Drug Conjugates: Bioanalytical Methods and Monitoring Strategy for a Novel Therapeutic Modality[J]. Aaps Journal, 2015.
眼科用药的药代动力学和生物分析
生物分析法规的解读与展望
痕量检测技术助力生物分析
流式细胞术在生物药临床生物分析中的应用
抗体鸡尾酒疗法的研发和生物分析
单克隆抗体药物的药代动力学和生物分析
经皮给药制剂的药代动力学和生物分析