小白学习Kafka(一):初识

前言

刚学了rabbitmq, 怎么突然又开始了kafka?

  1. 艺多不压身 <摸着渐渐稀疏的头发>
  2. 只有对比才能有更深的理解
  3. 起于专业,终于专业

起步

知乎上kafka 推荐书籍?,其中列出来了大神的书籍、博客,站在大佬的肩膀上,努力向前!

摘录下

  1. Apache Kafka 官网
  2. StackOverflow: Newest 'apache-kafka' Questions
  3. 美团李志涛博客
  4. 胡夕 - 博客园 –《Apache Kafka实战》
  5. kafka中文教程 - OrcHome

看了下极客时间—Kafka核心技术与实战的目录介绍,加上大佬有《Apache Kafka实战》,应该这样的配套更全面。

那就开始学习吧。

Kafka 是由 Linkedin 公司开发的,它是一个分布式的,支持多分区、多副本,基于 Zookeeper 的分布式消息流平台,它同时也是一款开源的基于发布订阅模式的消息引擎系统

消息引擎系统概念:

  1. 【官方】消息引擎系统是一组规范。企业利用这组规范在不同系统之间传递语 义准确的消息,实现松耦合的异步式数据传递。
  2. 【人话】系统 A 发送消息给消息引擎系统,系统 B 从消息引擎系统中读取 A 发送的消息。

组成部分

  1. 消息:json、xml、protocol buffer等
  2. 传输协议; <http不属于传输协议,属于网络协议>点对点模型: 上述列子中,A 只能被 B 读取。发布\订阅模型topic、publisher、subscriber可以有多个发布者向相同的主题发布消息,也支持多个消费者订阅。

kafka 基本概念

  1. Broker:Kafka 集群由多个 Kafka 实例(server) 组成,每个实例构成一个 broker,说白了就是服务器;
  2. Producer:生产者,即消息发送者,push 消息到 Kafka 集群中的 broker(就是 server)中
  3. Topic:主题,producer 向 kafka 集群 push 的消息会被归于某一类别,即Topic,这本质上只是一个逻辑概念,面向的对象是 producer 和 consumer,producer 只需要关注将消息 push 到哪一个 Topic 中,consumer 只需要关心自己订阅了哪个 Topic;
  4. Partition:每一个 Topic 又被分为多个 Partitions,即物理分区;出于负载均衡的考虑,同一个 Topic 的 Partitions 分别存储于 Kafka 集群的多个 broker 上;为了提高可靠性,这些 Partitions 可以由 Kafka 机制中的 replicas 来设置备份的数量;
  5. Consumer:消费者,从 Kafka 集群的 broker 中 pull 消息、消费消息;
  6. Consumer group:high-level consumer API 中,每个 consumer 都属于一个 consumer-group,每条消息只能被 consumer-group 中的一个 Consumer 消费,但可以被多个 consumer-group 消费;
  7. Replica。Kafka 中消息的备份又叫做副本(Replica),副本的数量是可以配置的,Kafka 定义了两类副本:领导者副本(Leader Replica)追随者副本(Follower Replica)前者对外提供服务,后者只是被动跟随
  8. Offset: 消息位移, 表示分区中每条消息的位置信息,是一个单调递增且不变的值
  9. Consumer Offset: 消费者位移,表征消费者消费进度,每个消费者都有自己的消费者位移。
  10. ZooKeeper:Kafka 通过 ZooKeeper 来存储集群的 meta 信息等;

kafka 与 Zookeeper

Kafka的服务器端由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个 Broker 组成,Broker 负责接收和处理客户端发送过来的请求,以及对消息进行持久化

该部分需要结合zk, 后续再学习。

定位

Kafka的定位:Kafka 不再是一个单纯的消息引擎系统,而是能够实现精确一次(Exactly-once)处理语义的实时流处理平台。

  1. Apache Kafka,也称社区版 Kafka。优势在于迭代速度快,社区响应度高,使用它可以 让你有更高的把控度;缺陷在于仅提供基础核心组件,缺失一些高级的特性。
  2. Confluent Kafka,Confluent 公司提供的 Kafka。优势在于集成了很多高级特性且由 Kafka 原班人马打造,质量上有保证;缺陷在于相关文档资料不全,普及率较低,没有太 多可供参考的范例。
  3. CDH/HDP Kafka,大数据云公司提供的 Kafka,内嵌 Apache Kafka。优势在于操作简 单,节省运维成本;缺陷在于把控度低,演进速度较慢。

监控
JMXTrans + InfluxDB + Grafana

部署方案

操作系统

五种I/O模型

  1. 阻塞式 I/O
  2. 非阻塞式 I/O
  3. I/O 多路复用:
  4. 信号驱动 I/O
  5. 异步 I/O。

I/O 模型与 Kafka 的关系又是什么呢?

实际上 Kafka 客户端底层使用了 Java 的 selector,selector 在 Linux 上的实现机制是 epoll,而在 Windows 平台上的实现机制 是 select。因此在这一点上将 Kafka 部署在 Linux 上是有优势的,因为能够获得更高效的 I/O 性能。

在 Linux 部署 Kafka 能够享受到零拷贝技术所带来的 快速数据传输特性。

磁盘容量

每天 1 亿1KB 大小的消息,保存两份且留存两周的时间,Kafka 集群需要为这个业务预 留多少磁盘空间吗?

  1. 单日:1 亿 * 1KB * 2 / 1000 / 1000 = 200GB
  2. 加上索引数据等,预留20%磁盘空间; 220G
  3. 两周,220*14,大约3T;
  4. kafka支持数据压缩,压缩比0.75, 总的需要2.25T

考虑的因素

  1. 消息数量
  2. 留存时间
  3. 平均消息大小
  4. 备份数量
  5. 是否启用压缩

带宽

假设你公司的机房环境是千兆网络,即 1Gbps,现在你有个业务,其业务目标或 SLA 是在 1 小时内处 理 1TB 的业务数据。需要多少台 Kafka 服务器来完成这个业务呢?

  1. 1Gbps, 每秒处理 1Gb 的数据;
  2. 单台Kafka服务用70% 带宽;也就是700Mb;【最大】
  3. 1T一小时,每秒 1000*1000/3600 = 277;
  4. 带宽资源 Mbps 而不是 MBps, 需要乘以8,等于2300+
  5. 2336/240, 约等于10台机器
  6. 如果需要备份两份,乘以3,即30台

配置

Broker 配置

  1. log.dirs:一定要配置多个路径,格式为CSV;
  2. log.dir:补充上一个参数的;

ZooKeeper 配置

  1. zookeeper.connect: CSV 格式的参数,比 如我可以指定它的值为 zk1:2181,zk2:2181,zk3:2181

你有两套 Kafka 集群,假设分别叫它们 kafka1 和 kafka2,那么两套集群的zookeeper.connect参数可以 这样指定:

zk1:2181,zk2:2181,zk3:2181/kafka1
zk1:2181,zk2:2181,zk3:2181/kafka2。

切记 chroot [别名]只需要写一次,而且是加到最后的

与 Broker 连接配置

  1. listeners:学名叫监听器, 对内,内网访问,这个就行了。
  2. advertised.listeners:这组监听器是 Broker 用于对外发布的
  3. listener.security.protocol.map: 告诉这个协议 底层使用了哪种安全协议;
改变当前broker 0上的log cleaner threads可以通过下面命令实现:> bin/kafka-configs.sh --bootstrap-server localhost:9092 --entity-type brokers --entity-name 0 --alter --add-config log.cleaner.threads=2查看当前broker 0的动态配置参数:> bin/kafka-configs.sh --bootstrap-server localhost:9092 --entity-type brokers --entity-name 0 --describe删除broker id为0的server上的配置参数/设置为默认值:> bin/kafka-configs.sh --bootstrap-server localhost:9092 --entity-type brokers --entity-name 0 --alter --delete-config log.cleaner.threads同时更新集群上所有broker上的参数(cluster-wide类型,保持所有brokers上参数的一致性):> bin/kafka-configs.sh --bootstrap-server localhost:9092 --entity-type brokers --entity-default --alter --add-config log.cleaner.threads=2查看当前集群中动态的cluster-wide类型的参数列表:> bin/kafka-configs.sh --bootstrap-server localhost:9092 --entity-type brokers --entity-default --describe

Topic 管理

  1. auto.create.topics.enable:false, 是否允许自动创建 Topic。建议:false, 防止疏忽创建topic;
  2. unclean.leader.election.enable:是否允许 Unclean Leader 选举。建议false, 不让落后太多的副本当选leader;
  3. auto.leader.rebalance.enable:是否允许定期进 行 Leader 选举。false,没必要没事leader,即便原来的leader正常也会定期换,没有必要。

Topic 级别参数
Topic 级别参数会覆盖全局 Broker 参数的值,而每个 Topic 都能设置自己的参数值,这就是所谓的 Topic 级别参数.

retention.ms:规定了该 Topic 消息被保存的时长。 默认是 7 天,即该 Topic 只保存最近 7 天的消息
retention.bytes:规定了要为该 Topic 预留多大的磁盘空间。

可在创建topic时,通过--config进行指定项的参数配置,覆盖默认配置:> bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic my-topic --partitions 1 --replication-factor 1 --config max.message.bytes=1000000 --config flush.messages=1也可以在创建topic之后通过config.sh文件对其中的特定指标进行修改,下面操作对my-topic相关指标进行配置:> bin/kafka-configs.sh --zookeeper localhost:2181 --entity-type topics --entity-name my-topic --alter --add-config max.message.bytes=1000000查看是否修改成功:> bin/kafka-configs.sh --zookeeper localhost:2181 --entity-type topics --entity-name my-topic --describe也可以撤销/删除某些指定配置,将该项重置为默认配置:> bin/kafka-configs.sh --zookeeper localhost:2181 --entity-type topics --entity-name my-topic --alter --delete-config max.message.bytes

数据留存

  1. log.retention.{hour|minutes|ms}: 控制一条消息数据被保存多长时间; hour多一些
  2. log.retention.bytes:这是指定 Broker 为消息保存 的总磁盘容量大小。:-1无限制,自行设置就行
  3. message.max.bytes:控制 Broker 能够接收的最大消 息大小。默认1000012, 1M,太小,只是一个度量尺;可以适当设置大一些。

操作系统参数

  1. 文件描述符限制: ulimit -n 1000000, 设置这个参数一 点都不重要,但不设置的话后果很严重,比如你会经常看 到“Too many open files”的错误。
  2. 文件系统类型: XFS 的性能要强于 ext4,
  3. Swappiness: 网上很多文章都提到设置其为 0,将 swap 完全禁掉以防止 Kafka 进程使用 swap 空间。我个人 反倒觉得还是不要设置成 0 比较好,设置成一个比较小的值,当开始使用 swap 空间时,你至少 能够观测到 Broker 性能开始出现急剧下降,从而给你进一 步调优和诊断问题的时间, 比如:1
  4. 提交时间:默认是 5 秒。向 Kafka 发送 数据并不是真要等数据被写入磁盘才会认为成功,而是只要 数据被写入到操作系统的页缓存(Page Cache)上就可以 了,随后操作系统根据 LRU 算法会定期将页缓存上 的“脏”数据落盘到物理磁盘上

问题汇总

问题摘录–极客时间—Kafka核心技术与实战

  1. A系统为什么不能直接把消息发送给B系统?削峰填谷,避免雪崩。上游接受订单,下游处理,结果雪崩了;对上游限速不合理,问题不在上游,采用消息队列进行解耦、削峰填谷

mq和rpc调用的区别是什么?

常见的数据流有三种:

  1. 通过数据库;
  2. 通过服务调用(REST/RPC);
  3. 通过异步消息传递(消息引擎,如 Kafka)
  1. MQ有自己的buffer,能够对抗过载(overloaded)和不可用场景
  2. MQ支持重试
  3. 允许发布/订阅模式
  4. RPC是介于通过数据库和通过MQ之间的数据流模式。

参考

kafka 推荐书籍?
kafka 中文文档
深入浅出理解基于 Kafka 和 ZooKeeper 的分布式消息队列

(0)

相关推荐

  • linux的centos7搭建kafak集群

    下载kafka,这里我们使用2.6.0版本 https://www.apache.org/dyn/closer.cgi?path=/kafka/2.7.0/kafka_2.13-2.7.0.tgz 解 ...

  • Kafka系列1:Kafka概况

    Kafka是当前分布式系统中最流行的消息中间件之一,凭借着其高吞吐量的设计,在日志收集系统和消息系统的应用场景中深得开发者喜爱.本篇就聊聊Kafka相关的一些知识点.主要包括以下内容: Kafka简介 ...

  • 分享某大学实验室内部项目:Docker+Kafka实战流程

    前言 之前老有朋友跟我说有没有Docker+其他技术完整得执行流程啊,体验一下做项目得感觉是什么样,但是说实话,我实在是无能为力,虽然公司内部确实用到了Docker得相关内容,但是你要说让我摘出来,那 ...

  • 小白学习Kafka(二):主题策略

    分区 Kafka 的消息组织方 式实际上是三级结构:主题 - 分区 - 消息 问题一:为什么 Kafka 要做这样的设计?为什么使用分区的概念而不是直接使用多个主题呢? 分区的目的是:提供负载均衡,实 ...

  • 【地产投资测算学习1】初识投资测算表以及基础准备

    从今天开始Lawping(公众号taxreview)会陆续写写地产投资测算方面的文章.由于我的工作主要是地产税务管理,重点会写在投资测算中的增值税.企业所得税和土地增值税等地产三大税.但由于各税种,特 ...

  • 《易经》解卦需要掌握的基础知识,适合小白学习

    最近有不少朋友问我,我学<易经>有一段时间了,但还是不会解卦,如何才能学会解卦呢? 我想这也是每一个读易者,都会遇到的一个问题. 那么咱们今天就讲一讲,新手朋友们如何才能快速学会解卦,需要 ...

  • 小白学习写作,从业余到专业,只需掌握7个步骤和8个方案

    在现代社会中,会写作,尤其是那些号称笔杆子的人,不管到什么单位工作,都多少占点优势.懂写作,在职场上,能加分,在社会交往中,也能让人高看一眼.比如我本人,也没有做官,也不是什么大富豪.但是,每逢饭局, ...

  • 来了!我对小白学习金融的2条建议

    ***本文由天眼查特约出品*** 对于没有专业背景的小白,如何快速入门学习搞懂金融?这是很多读者在后台给我提过的问题.今天我就结合自己的工作经历,和大家分享一些我的建议. 其实归纳起来,主要有两条: ...

  • 理财小白学习投资前一定要知道的4件事

    随着投资理财的宣传推广,越来越多的年轻人也是早早地学习了理财知识,今年买股票.买基金的人也是大幅增加,过年要是不讨论基金,都无法加入聊天阵容. 但是对于刚刚入场的朋友来说,在正式开始投资理财前,有4点 ...

  • 小白学习西门子PLC从入门到进化,经验分享,让你少走弯路

    学习西门子PLC没有想象中那么难,一句话可以总结为:对初学者来说,600多块的SR20就足够用了. 详细展开讲,就涉及到PLC的硬件组成.编程软件.系统指令和程序结构等复杂的内容. 接下来,我将从PL ...

  • 小白学习小结

    ​老师给你做一个小白营课程的总结

  • 量化小白学习之路 作者:聚宽社区用户 LthID 我个人的情况,是在股票市场有几年的经验,和还算不错...

    作者:聚宽社区用户 LthID 我个人的情况,是在股票市场有几年的经验,和还算不错的业绩. 由于本人热爱投资.专注于投资这一领域,这几年兴起的量化投资这一技术就不得不关注. 其实一点编程都不会,虽然大 ...