使用OpenCV实现图像增强

重磅干货,第一时间送达

本期将介绍如何通过图像处理从低分辨率/模糊/低对比度的图像中提取有用信息。

下面让我们一起来探究这个过程:

首先我们获取了一个LPG气瓶图像,该图像取自在传送带上运行的仓库。我们的目标是找出LPG气瓶的批号,以便更新已检测的LPG气瓶数量。

步骤1:导入必要的库

import cv2import numpy as npimport matplotlib.pyplot as plt

步骤2:加载图像并显示示例图像。

img= cv2.imread('cylinder1.png')img1=cv2.imread('cylinder.png')images=np.concatenate(img(img,img1),axis=1)cv2.imshow("Images",images)cv2.waitKey(0)cv2.destroyAllWindows()

LPG气瓶图片(a)批次-D26(b)批次C27

该图像的对比度非常差。我们几乎看不到批号。这是在灯光条件不足的仓库中的常见问题。接下来我们将讨论对比度受限的自适应直方图均衡化,并尝试对数据集使用不同的算法进行实验。

步骤3:将图像转换为灰度图像

gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)gray_img1=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)

步骤4:找到灰度图像的直方图后,寻找强度的分布。

hist=cv2.calcHist(gray_img,[0],None,[256],[0,256])hist1=cv2.calcHist(gray_img1,[0],None,[256],[0,256])plt.subplot(121)plt.title("Image1")plt.xlabel('bins')plt.ylabel("No of pixels")plt.plot(hist)plt.subplot(122)plt.title("Image2")plt.xlabel('bins')plt.ylabel("No of pixels")plt.plot(hist1)plt.show()

步骤5:现在,使用cv2.equalizeHist()函数来均衡给定灰度图像的对比度。cv2.equalizeHist()函数可标准化亮度并增加对比度。

gray_img_eqhist=cv2.equalizeHist(gray_img)gray_img1_eqhist=cv2.equalizeHist(gray_img1)hist=cv2.calcHist(gray_img_eqhist,[0],None,[256],[0,256])hist1=cv2.calcHist(gray_img1_eqhist,[0],None,[256],[0,256])plt.subplot(121)plt.plot(hist)plt.subplot(122)plt.plot(hist1)plt.show()

步骤6:显示灰度直方图均衡图像

eqhist_images=np.concatenate((gray_img_eqhist,gray_img1_eqhist),axis=1)cv2.imshow("Images",eqhist_images)cv2.waitKey(0)cv2.destroyAllWindows()

灰度直方图均衡

让我们进一步深入了解CLAHE

步骤7:

对比度有限的自适应直方图均衡

该算法可以用于改善图像的对比度。该算法通过创建图像的多个直方图来工作,并使用所有这些直方图重新分配图像的亮度。CLAHE可以应用于灰度图像和彩色图像。有2个参数需要调整。

1. 限幅设置了对比度限制的阈值。默认值为40

2. tileGridsize设置行和列中标题的数量。在应用CLAHE时,为了执行计算,图像被分为称为图块(8 * 8)的小块。

clahe=cv2.createCLAHE(clipLimit=40)gray_img_clahe=clahe.apply(gray_img_eqhist)gray_img1_clahe=clahe.apply(gray_img1_eqhist)images=np.concatenate((gray_img_clahe,gray_img1_clahe),axis=1)cv2.imshow("Images",images)cv2.waitKey(0)cv2.destroyAllWindows()

步骤8:

门槛技术

阈值处理是一种将图像划分为前景和背景的简单但有效的方法。如果像素强度小于某个预定义常数(阈值),则最简单的阈值化方法将源图像中的每个像素替换为黑色像素;如果像素强度大于阈值,则使用白色像素替换源像素。阈值的不同类型是:

cv2.THRESH_BINARY

cv2.THRESH_BINARY_INV

cv2.THRESH_TRUNC

cv2.THRESH_TOZERO

cv2.THRESH_TOZERO_INV

cv2.THRESH_OTSU

cv2.THRESH_TRIANGLE

尝试更改阈值和max_val以获得不同的结果。

th=80max_val=255ret, o1 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_BINARY)cv2.putText(o1,"Thresh_Binary",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)ret, o2 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_BINARY_INV)cv2.putText(o2,"Thresh_Binary_inv",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)ret, o3 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_TOZERO)cv2.putText(o3,"Thresh_Tozero",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)ret, o4 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_TOZERO_INV)cv2.putText(o4,"Thresh_Tozero_inv",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)ret, o5 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_TRUNC)cv2.putText(o5,"Thresh_trunc",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)ret ,o6= cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_OTSU)cv2.putText(o6,"Thresh_OSTU",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)
final=np.concatenate((o1,o2,o3),axis=1)final1=np.concatenate((o4,o5,o6),axis=1)
cv2.imwrite("Image1.jpg",final)cv2.imwrite("Image2.jpg",final1)

Thresh_Binary_inv,Thresh_Binary_inv,Thresh_Tozero

Thresh_Tozero_inv,Thresh_trunc,Thresh_OSTU

步骤9:自适应阈值

在上一节中,我们使用了全局阈值来应用cv2.threshold()。如我们所见,由于图像不同区域的照明条件不同,因此获得的结果不是很好。在这些情况下,您可以尝试自适应阈值化。在OpenCV中,自适应阈值处理由cv2.adapativeThreshold()函数执行

此功能将自适应阈值应用于src阵列(8位单通道图像)。maxValue参数设置dst图像中满足条件的像素的值。adaptiveMethod参数设置要使用的自适应阈值算法。

cv2.ADAPTIVE_THRESH_MEAN_C:将T(x,y)阈值计算为(x,y)的blockSize x blockSize邻域的平均值减去C参数。
cv2.ADAPTIVE_THRESH_GAUSSIAN_C:将T(x,y)阈值计算为(x,y)的blockSize x blockSize邻域的加权总和减去C参数。

blockSize参数设置用于计算像素阈值的邻域的大小,它可以取值3、5、7等。

C参数只是从均值或加权均值中减去的常数(取决于adaptiveMethod参数设置的自适应方法)。通常,此值为正,但可以为零或负。

gray_image = cv2.imread('cylinder1.png',0)gray_image1 = cv2.imread('cylinder.png',0)thresh1 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)thresh2 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 31, 3)thresh3 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 13, 5)thresh4 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 4)thresh11 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)thresh21 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 31, 5)thresh31 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21,5 )thresh41 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 5)
final=np.concatenate((thresh1,thresh2,thresh3,thresh4),axis=1)final1=np.concatenate((thresh11,thresh21,thresh31,thresh41),axis=1)cv2.imwrite('rect.jpg',final)cv2.imwrite('rect1.jpg',final1)

自适应阈值

自适应阈值

步骤10:OTSU二值化

Otsu的二值化算法,在处理双峰图像时是一种很好的方法。双峰图像可以通过其包含两个峰的直方图来表征。Otsu的算法通过最大化两类像素之间的方差来自动计算将两个峰分开的最佳阈值。等效地,最佳阈值使组内差异最小化。Otsu的二值化算法是一种统计方法,因为它依赖于从直方图得出的统计信息(例如,均值,方差或熵)
gray_image = cv2.imread('cylinder1.png',0)gray_image1 = cv2.imread('cylinder.png',0)ret,thresh1 = cv2.threshold(gray_image,0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)ret,thresh2 = cv2.threshold(gray_image1,0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imwrite('rect.jpeg',np.concatenate((thresh1,thresh2),axis=1))

OTSU二值化

现在,我们已经从低对比度的图像中清楚地识别出批号。

交流群

(0)

相关推荐

  • (1条消息) OpenCV图像处理实际案例(二)

    本博客算法及代码参考自贾志刚老师的<OpenCV图像处理-小案例实战>,若涉及侵权问题,望通知,会第一时间删除. 功能要求: 从如下图片中找出所有直线.  解决方案一: 直接进行霍夫直线检 ...

  • 边缘和轮廓检测——计算机视觉的应用

    计算机视觉的重点是从计算机中的视频和图像中提取有意义的信息.在本文中,我们将从初学者开始探索一个使用 OpenCV 的出色计算机视觉项目. 其标题是"使用计算机视觉进行边缘和轮廓检测&quo ...

  • OpenCV之七段数码管识别(含代码)

    OpenCV之七段数码管识别(含代码)

  • (9条消息) ocr图像预处理

    说明:文字方向校正(fft方式和放射变换方式)参考了网上的代码,只做了少量修改 只针对医疗影像图像,自然场景下的另说 因为处理的图像都很大很大,居然有11000*12000这种分辨率的,有90M大小, ...

  • 【CV】基于阈值处理的图像分割算法!

    图像处理 Author:louwill Machine Learning Lab 基于阈值的图像分割因其处理直观.实现简单和计算速度快,是一种更为常用的传统图像分割算法.本文基于图像灰度阈值处理的基本 ...

  • (9条消息) OCR预处理:矫正图片中的文本信息(opencv)

    (9条消息) OCR预处理:矫正图片中的文本信息(opencv)

  • 自适应阈值化操作:adaptiveThreshold()函数

    在图像阈值化操作中,更关注的是从二值化图像中,分离目标区域和背景区域,但是仅仅通过设定固定阈值很难达到理想的分割效果.而自适应阈值,则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样 ...

  • [opencv]吊诡的摄像头黑屏

    #include <opencv2/core.hpp> #include <opencv2/videoio.hpp> #include <opencv2/highgui. ...

  • 如何使用OpenCV实现图像均衡???

    重磅干货,第一时间送达 我们已经练习了很多图像处理--操作图像(精确地说是图像矩阵).为此,我们探索了图像的均衡方法,以便在一定程度上增强对比度,以使被处理的图像看起来比原始图像更好,这种技术称为直方 ...

  • 219个opencv常用函数汇总

    本文转自|新机器视觉 1.cvLoadImage:将图像文件加载至内存: 2.cvNamedWindow:在屏幕上创建一个窗口: 3.cvShowImage:在一个已创建好的窗口中显示图像: 4.cv ...

  • 基于OpenCV实战:车牌检测

    重磅干货,第一时间送达 拥有思维导图或流程将引导我们朝着探索和寻找实现目标的正确道路的方向发展.如果要给我一张图片,我们如何找到车牌并提取文字? 一般思维步骤: 识别输入数据是图像. 扫描图像以查看由 ...

  • 基于OpenCV实战的图像处理:色度分割

    重磅干货,第一时间送达 通过HSV色阶使用彩色图像可以分割来分割图像中的对象,但这并不是分割图像的唯一方法.为什么大多数人偏爱色度而不是RGB / HSV分割? 可以获得RGB / HSV通道之间的比 ...

  • 【福利】OpenCV最新中文版官方教程来了(附下载)

    OpenCV 中文版官方教程来了. OpenCV是计算机视觉中经典的专用库,然而其中文版官方教程久久不来.近日,一款最新OpenCV4.1 版本的完整中文版官方教程出炉,读者朋友可以更好的学习了解Op ...

  • 迅为i.MX6ULL开发板-移植OpenCv2.4.9-搭建OpenCv编译环境

    本章节将介绍 OpenCV 的移植方法,及结合 Qt 例程去进一步学习 OpenCV 识别图像.本章节使用的资料已经放到了开发板网盘资料中,路径为:"11_Linux 系统开发进阶\85_章 ...

  • 使用Python OpenCV实现姿态估计

    什么是OpenCV? 计算机视觉是一个能够理解图像和视频如何存储和操作的过程,它还有助于从图像或视频中检索数据.计算机视觉是人工智能的一部分. 计算机视觉在自动驾驶汽车,物体检测,机器人技术,物体跟踪 ...

  • 基于OpenCV的实战:轮廓检测(附代码解析)

    重磅干货,第一时间送达 利用轮廓检测物体可以看到物体的各种颜色,在这种情况下放置在静态和动态物体上.如果是统计图像,则需要将图像加载到程序中,然后使用OpenCV库,以便跟踪对象. 每当在框架中检测到 ...