小学数学经典题目——鸡兔同笼问题,解法大全
睿智的大脑,从学习数学开始。
鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:
“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有几只鸡和兔?
以上这道鸡兔同笼问题,有这样几种解法:
1、假设法(最便捷的方法)
假设全是鸡:2×35=70(只)
鸡脚比总脚数少:94-70=24(只)
兔:24÷(4-2)=12 (只)
鸡:35-12=23(只)
2、方程法(最万能的方法)
一元一次方程
解:设兔有x只,则鸡有(35-x)只。
4x+2(35-x)=94
解得:x=12
35-12=23(只)
或 解:设鸡有x只,则兔有(35-x)只。
2x+4(35-x)=94
解得:x=23
35-23=12(只)
答:兔子有12只,鸡有23只。
注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。
二元一次方程
解:设鸡有x只,兔有y只。
x+y=35
2x+4y=94
解得:y=12
把y=12代入x+y=35
解得:x=23
答:兔子有12只,鸡有23只
3、抬腿法(最有趣的方法)
法一
假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚。笼子里的兔就比鸡的头数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。
法二
假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。
对于“鸡兔同笼”这种问题,常见的有这样几种类型的问题:
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一 (100-2×36)÷(4-2)=14(只)兔; 36-14=22(只)鸡。
解二 (4×36-100)÷(4-2)=22(只)鸡; 36-22=14(只)兔。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。
(4)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解:〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2 =12÷2=6(只)兔