初中数学十大基本解题方法之构造法

每日积累一点,每日进步一点.

初中数学十大解题方法详解(六)

构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法.运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决.

典型例题:

一座抛物线型拱桥如图所示,桥下水面宽度是4m时,拱高是2m.当水面下降1m后,水面宽度是多少?(结果精确到0.1m

【思路分析】本题和实际问题结合紧密,图象是我们学过的抛物线,所以要学会构造数学模型,建立坐标系,通过这种方法,可以很巧妙地利用我们学过的知识.

【答案解析】

待续...

《初中数学典型题思路分析!》,

不仅是一堆猎物,也是一支猎枪.

是大多数学生奋战区和极限区题目用书.
奋战区和极限区概念见历史文章:
做题区域:愉悦区、奋战区和极限区
(0)

相关推荐