Linux内存管理 (3)内核内存的布局图

专题:Linux内存管理专题

关键词:内核内存布局图、lowmem线性映射区、kernel image、ZONE_NORMAL、ZONE_HIGHMEM、swapper_pg_dir、fixmap、vector、pkmap。

内核内存布局图对于理解内存管理至关重要,有了布局图对于理解内存管理初始化,以及虚拟内存,各种内存分配都有辅助作用。

所以可以用一张图来总领,然后逐个介绍每一段的来历,作用等等。

内核内存布局图和内存管理框架图是不同视角的内存管理框图,还包括后面介绍的用户空间内存布局图。

1. 内核内存布局图框图

2. 内核内存布局打印

在内核基本完成内存初始化工作,整体布局稳定之后,start_kernel-->mm_init-->mem_init打印了一段内存layout。

Vexpress平台打印如下:

Memory: 1031428K/1048576K available (4787K kernel code, 156K rwdata, 1364K rodata, 1348K init, 166K bss, 17148K reserved, 0K cma-reserved, 270336K highmem)
Virtual kernel memory layout:
    vector  : 0xffff0000 - 0xffff1000   (   4 kB)
    fixmap  : 0xffc00000 - 0xfff00000   (3072 kB)
    vmalloc : 0xf0000000 - 0xff000000   ( 240 MB)
    lowmem  : 0xc0000000 - 0xef800000   ( 760 MB)
    pkmap   : 0xbfe00000 - 0xc0000000   (   2 MB)
    modules : 0xbf000000 - 0xbfe00000   (  14 MB)
      .text : 0xc0008000 - 0xc060a09c   (6153 kB)
      .init : 0xc060b000 - 0xc075c000   (1348 kB)
      .data : 0xc075c000 - 0xc07833c0   ( 157 kB)
       .bss : 0xc07833c0 - 0xc07acbf0   ( 167 kB)

这里面的地址都是虚拟地址,其中lowmem是线性映射区。

线性映射区的意思是0xc0000000 - 0xef800000这段虚拟地址,和0x60000000 - 0x8f800000这段物理地址是一一对应的。

.text、.init、.data、.bss都属于lowmem区域,也即ZONE_NORMAL;vector、fixmap、vmalloc属于ZONE_HIGHMEM区域。

pkmap、modules属于用户空间。

void __init mem_init(void)
{
#ifdef CONFIG_HAVE_TCM
    /* These pointers are filled in on TCM detection */
    extern u32 dtcm_end;
    extern u32 itcm_end;
#endif

    set_max_mapnr(pfn_to_page(max_pfn) - mem_map);

    /* this will put all unused low memory onto the freelists */
    free_unused_memmap();
    free_all_bootmem();

#ifdef CONFIG_SA1111
    /* now that our DMA memory is actually so designated, we can free it */
    free_reserved_area(__va(PHYS_OFFSET), swapper_pg_dir, -1, NULL);
#endif

    free_highpages();

    mem_init_print_info(NULL);

#define MLK(b, t) b, t, ((t) - (b)) >> 10
#define MLM(b, t) b, t, ((t) - (b)) >> 20
#define MLK_ROUNDUP(b, t) b, t, DIV_ROUND_UP(((t) - (b)), SZ_1K)

    pr_notice("Virtual kernel memory layout:\n"
            "    vector  : 0x%08lx - 0x%08lx   (%4ld kB)\n"
#ifdef CONFIG_HAVE_TCM
            "    DTCM    : 0x%08lx - 0x%08lx   (%4ld kB)\n"
            "    ITCM    : 0x%08lx - 0x%08lx   (%4ld kB)\n"
#endif
            "    fixmap  : 0x%08lx - 0x%08lx   (%4ld kB)\n"
            "    vmalloc : 0x%08lx - 0x%08lx   (%4ld MB)\n"
            "    lowmem  : 0x%08lx - 0x%08lx   (%4ld MB)\n"
#ifdef CONFIG_HIGHMEM
            "    pkmap   : 0x%08lx - 0x%08lx   (%4ld MB)\n"
#endif
#ifdef CONFIG_MODULES
            "    modules : 0x%08lx - 0x%08lx   (%4ld MB)\n"
#endif
            "      .text : 0x%p" " - 0x%p" "   (%4td kB)\n"
            "      .init : 0x%p" " - 0x%p" "   (%4td kB)\n"
            "      .data : 0x%p" " - 0x%p" "   (%4td kB)\n"
            "       .bss : 0x%p" " - 0x%p" "   (%4td kB)\n",

            MLK(UL(CONFIG_VECTORS_BASE), UL(CONFIG_VECTORS_BASE) +
                (PAGE_SIZE)),
#ifdef CONFIG_HAVE_TCM
            MLK(DTCM_OFFSET, (unsigned long) dtcm_end),
            MLK(ITCM_OFFSET, (unsigned long) itcm_end),
#endif
            MLK(FIXADDR_START, FIXADDR_END),
            MLM(VMALLOC_START, VMALLOC_END),
            MLM(PAGE_OFFSET, (unsigned long)high_memory),
#ifdef CONFIG_HIGHMEM
            MLM(PKMAP_BASE, (PKMAP_BASE) + (LAST_PKMAP) *
                (PAGE_SIZE)),
#endif
#ifdef CONFIG_MODULES
            MLM(MODULES_VADDR, MODULES_END),
#endif

            MLK_ROUNDUP(_text, _etext),
            MLK_ROUNDUP(__init_begin, __init_end),
            MLK_ROUNDUP(_sdata, _edata),
            MLK_ROUNDUP(__bss_start, __bss_stop));

#undef MLK
#undef MLM
#undef MLK_ROUNDUP

    /*
     * Check boundaries twice: Some fundamental inconsistencies can
     * be detected at build time already.
     */
#ifdef CONFIG_MMU
    BUILD_BUG_ON(TASK_SIZE                > MODULES_VADDR);
    BUG_ON(TASK_SIZE                 > MODULES_VADDR);
#endif

#ifdef CONFIG_HIGHMEM
    BUILD_BUG_ON(PKMAP_BASE + LAST_PKMAP * PAGE_SIZE > PAGE_OFFSET);
    BUG_ON(PKMAP_BASE + LAST_PKMAP * PAGE_SIZE    > PAGE_OFFSET);
#endif

    if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
        extern int sysctl_overcommit_memory;
        /*
         * On a machine this small we won't get
         * anywhere without overcommit, so turn
         * it on by default.
         */
        sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
    }
}

3. 各部分框图详解

3.1 内核空间用户空间划分

内核和用户空间的分界点是由PAGE_OFFSET决定的,即内核image的起始地址为0xc0000000。

/* PAGE_OFFSET - the virtual address of the start of the kernel image */
#define PAGE_OFFSET        UL(CONFIG_PAGE_OFFSET)

#define CONFIG_PAGE_OFFSET 0xC0000000

3.2 kernel image空间

为什么kernel image空间从0xc0008000开始?

0xc0008000是由两部分组成的PAGE_OFFSET + TEXT_OFFSET。在arch/arm/kernel/vmlinux.lds.S中进行了明确定义。

生成的文件vmlinux.lds中,可以看出.text即从0xc000800开始。

OUTPUT_ARCH(arm)
ENTRY(stext)
jiffies = jiffies_64;
SECTIONS
{
 /*
     * XXX: The linker does not define how output sections are
     * assigned to input sections when there are multiple statements
     * matching the same input section name.  There is no documented
     * order of matching.
     *
     * unwind exit sections must be discarded before the rest of the
     * unwind sections get included.
     */
...
 . = 0xC0000000 + 0x00008000;
 .head.text : {
  _text = .;
  *(.head.text)
 }
 .text : { /* Real text segment        */
  _stext = .; /* Text and read-only data    */...
 }

在了解.text其实地址来历之后,通过查看System.map就可以确定其余段的地址了。

从mem_init中打印的log,可以看出:_text - _etext,0xc060a09c - 0xc0008000=6153KB,采用1K对齐。

kernel image空间从_text开始,到_end结束。

c0008000 T _text
c0008000 T stext
...
c060a09c T _etext
c060b000 T __init_begin
...
c075c000 D __init_end
c075c000 D _data
c075c000 D _sdata
c075c000 D init_thread_union
c075e000 D __nosave_begin
...
c07833c0 B __bss_start
c07833c0 D _edata
..
c07acbf0 B __bss_stop
c07acbf0 B _end

3.3 vmalloc空间

vmalloc的区域用于给vmalloc/ioremap动态分配内存。

vmalloc的空间确定较简单,首先确定vmalloc终点0xff000000。

#define VMALLOC_OFFSET        (8*1024*1024)
#define VMALLOC_START        (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_END        0xff000000UL

然后是确定vmalloc区域的起点,其中vmalloc和lowmem之间需要一个8MB空间的Gap。

static void * __initdata vmalloc_min =
    (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);----------------------------vmalloc_min为VMALLOC_END向下偏移240MB。

void __init sanity_check_meminfo(void)
{
    phys_addr_t memblock_limit = 0;
    int highmem = 0;
    phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
    struct memblock_region *reg;

    for_each_memblock(memory, reg) {
        phys_addr_t block_start = reg->base;
        phys_addr_t block_end = reg->base + reg->size;
        phys_addr_t size_limit = reg->size;

        if (reg->base >= vmalloc_limit)
            highmem = 1;
        else
            size_limit = vmalloc_limit - reg->base;
...
        if (!highmem) {
            if (block_end > arm_lowmem_limit) {
                if (reg->size > size_limit)
                    arm_lowmem_limit = vmalloc_limit;------------------------------此种情况arm_lowmem_limit等于vmalloc_min
                else
                    arm_lowmem_limit = block_end;
            }
...
        }
    }

    high_memory = __va(arm_lowmem_limit - 1) + 1;---------------------------------所以high_memory也即vmalloc_min。
...   memblock_set_current_limit(memblock_limit);-----------------------------------根据arm_lowmem_limit来作为ZONE_NORMAL的终点。
}

最终VMALLOC_START即为VMALLOC_END向下偏移240MB,即VMALLOC_START=0xf0000000

关于vmalloc 8MB hole

vmalloc区域和lowmem区域之间有一个8MB的hole。

lowmem区域是线性映射,可以虚拟地址和物理地址是1:1对应的。

这个8MB由于捕获虚拟地址的越界访问。

3.4 ZONE_NORMAL和ZONE_HIGHMEM划分

zone的划分在bootmem_init-->find_limits中确定。其中memblock.current_limit是在sanity_check_meminfo中确定。

max_low即作为ZONE_NORMAL和ZONE_HIGHMEM分界点,即0xef800000。

ZONE_NORMAL大小760MB,从0xc0000000 - 0xef800000,ZONE_HIGHMEM大小264MB,从0xef800000 - 0xffffffff。

ZONE_HIGHMEM并不等同于vmalloc,还有8MB hole和末尾16MB空间。所以vmalloc=264-8-16=240MB。

static void __init find_limits(unsigned long *min, unsigned long *max_low,
                   unsigned long *max_high)
{
    *max_low = PFN_DOWN(memblock_get_current_limit());
    *min = PFN_UP(memblock_start_of_DRAM());
    *max_high = PFN_DOWN(memblock_end_of_DRAM());
}

void __init_memblock memblock_set_current_limit(phys_addr_t limit)
{
    memblock.current_limit = limit;
}

phys_addr_t __init_memblock memblock_get_current_limit(void)
{
    return memblock.current_limit;
}

对于ZONE_NORMAL线性映射区域,虚拟地址和物理地址转换比较简单。由于Vexpress的RAM起始地址映射在0x60000000。

所以计算的时候需要去除这部分偏移PHYS_OFFSET。

static inline phys_addr_t __virt_to_phys(unsigned long x)
{
    return (phys_addr_t)x - PAGE_OFFSET + PHYS_OFFSET;
}

static inline unsigned long __phys_to_virt(phys_addr_t x)
{
    return x - PHYS_OFFSET + PAGE_OFFSET;
}

3.5 swapper_pg_dir

swapper_pg_dir用于存放内核PGD页表的地方,赋给init_mm.pgd。

swapper_pg_dir被定义了绝对地址,在arch/arm/kernel/head.S中有如下定义。

swapper_pd_dir的大小为16KB,对应的虚拟地址空间是从0xc0004000 - 0xc0008000,物理地址空间是0x6000400~0x60008000。

arch/arm/kernel/head.S:
/*
 * swapper_pg_dir is the virtual address of the initial page table.
 * We place the page tables 16K below KERNEL_RAM_VADDR.  Therefore, we must
 * make sure that KERNEL_RAM_VADDR is correctly set.  Currently, we expect
 * the least significant 16 bits to be 0x8000, but we could probably
 * relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000.
 */
#define KERNEL_RAM_VADDR    (PAGE_OFFSET + TEXT_OFFSET)
#if (KERNEL_RAM_VADDR & 0xffff) != 0x8000--------------------------------------KERNEL_RAM_VADDR也确实是0xc0008000
#error KERNEL_RAM_VADDR must start at 0xXXXX8000
#endif

#ifdef CONFIG_ARM_LPAE
    /* LPAE requires an additional page for the PGD */
#define PG_DIR_SIZE    0x5000
#define PMD_ORDER    3
#else
#define PG_DIR_SIZE    0x4000
#define PMD_ORDER    2
#endif

    .globl    swapper_pg_dir
    .equ    swapper_pg_dir, KERNEL_RAM_VADDR - PG_DIR_SIZE-------------------.equ定义swapper_pg_dir的绝对地址,所以swapper_pg_dir=0xc0008000-0x4000=0xc0004000

mm/init-mm.c:
struct mm_struct init_mm = {
    .mm_rb        = RB_ROOT,
    .pgd        = swapper_pg_dir,
...
    INIT_MM_CONTEXT(init_mm)
};

3.6 fixmap

fixmap是固定映射的意思,固定指的是固定虚拟地址。

那么这些固定的虚拟地址谁在用?都对应哪些物理地址?

fixmap区域很固定,大小为3MB,从0xffc00000 - 0xfff00000。

#define FIXADDR_START        0xffc00000UL
#define FIXADDR_END        0xfff00000UL
#define FIXADDR_TOP        (FIXADDR_END - PAGE_SIZE)-------------保留一页Hole

延伸阅读:《Fix-Mapped Addresses

3.7 vector

vector区域用于映射CPU vector page,大小一页4KB,从0xffff0000 - 0xffff1000。

#define CONFIG_VECTORS_BASE 0xffff0000

在系统编译的时候,arch/arm/kernel/vmlinux.ld.S决定__vectors_start、__stubs_start起始地址。

__vectors_start = .;
    .vectors 0 : AT(__vectors_start) {
        *(.vectors)
    }
    . = __vectors_start + SIZEOF(.vectors);
    __vectors_end = .;

    __stubs_start = .;
    .stubs 0x1000 : AT(__stubs_start) {
        *(.stubs)
    }
    . = __stubs_start + SIZEOF(.stubs);
    __stubs_end = .;

这两部分的生成结果在System.map中也可以看出:

00000000 t __vectors_start
00000024 A cpu_v7_suspend_size
0000002c A cpu_ca9mp_suspend_size
00001000 t __stubs_start
00001004 t vector_rst
00001020 t vector_irq
000010a0 t vector_dabt
00001120 t vector_pabt
000011a0 t vector_und
00001220 t vector_addrexcptn
00001240 t vector_fiq
00001240 T vector_fiq_offset
...

这两部分在early_trap_init中拷贝,拷贝到了0xffff0000。__vextors_start占据一页,__stubs_start占据一页。

void __init early_trap_init(void *vectors_base)
{
...    memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start);
    memcpy((void *)vectors + 0x1000, __stubs_start, __stubs_end - __stubs_start);

    kuser_init(vectors_base);

    flush_icache_range(vectors, vectors + PAGE_SIZE * 2);
    modify_domain(DOMAIN_USER, DOMAIN_CLIENT);
...}

3.8 pkmap

pkmap的意思是Permanent Kernel MAPping,永久内核内存映射。

是一种将Highmem页面映射到内核空间的技术。所以就需要定义CONFIG_HIGHMEM,才会存在这个区域。

所以pkmap区域是2MB大小,从0xbfe00000 - 0xc0000000。

#define PKMAP_BASE        (PAGE_OFFSET - PMD_SIZE)---------------------0xc0000000-0x200000=0xbfe00000
#define LAST_PKMAP        PTRS_PER_PTE
#define PTRS_PER_PTE        512

#define PMD_SHIFT        21
#define PGDIR_SHIFT        21

#define PMD_SIZE        (1UL << PMD_SHIFT)

Documentation/arm/memory.txt:

PKMAP_BASE    PAGE_OFFSET-1    Permanent kernel mappings One way of mapping HIGHMEM pages into kernel
                space.

延伸阅读:《高端内存永久映射分析

3.9 modules

如果定义了CONFIG_MODULES功能,则需要在用户空间开辟一段空间给insmod插入的模块。

这部分空间是动态映射的,在定义CONFIG_HIGHMEM情况下为16MB-2MB=14MB,从0xbf00000 - 0xbfe00000。

/*
 * The module space lives between the addresses given by TASK_SIZE
 * and PAGE_OFFSET - it must be within 32MB of the kernel text.
 */
#ifndef CONFIG_THUMB2_KERNEL
#define MODULES_VADDR        (PAGE_OFFSET - SZ_16M)------------------0xc0000000-0x1000000=0xbf000000
#else
/* smaller range for Thumb-2 symbols relocation (2^24)*/
#define MODULES_VADDR        (PAGE_OFFSET - SZ_8M)
#endif

#if TASK_SIZE > MODULES_VADDR
#error Top of user space clashes with start of module space
#endif

/*
 * The highmem pkmap virtual space shares the end of the module area.
 */
#ifdef CONFIG_HIGHMEM
#define MODULES_END        (PAGE_OFFSET - PMD_SIZE)----------------0xc0000000-0x200000=0xbfe00000
#else
#define MODULES_END        (PAGE_OFFSET)
#endif
(0)

相关推荐

  • 中科世为A33启动信息

    参考https://whycan.com/t_1998.html [    0.000000] Booting Linux on physical CPU 0 [    0.000000] Linux ...

  • Windows内存篇Ⅱ x64内核内存布局的迁移演变

    FaEry 看雪学院 3天前 编辑 本文为看雪论精华文章 看雪论坛作者ID:FaEry 前言 内存扫描一直都是比较根本的威胁检测手法,对于顽固型木马外挂而言,依赖于操作系统API相关的传统检测方式,模 ...

  • 万字整理,肝翻Linux内存管理所有知识点

    Linux的内存管理可谓是学好Linux的必经之路,也是Linux的关键知识点,有人说打通了内存管理的知识,也就打通了Linux的任督二脉,这一点不夸张.有人问网上有很多Linux内存管理的内容,为什 ...

  • Linux 内存管理之vmalloc

    走进vmalloc 根据前面的系列文章,我们知道了buddy system是基于页框分配器,kmalloc是基于slab分配器,而且这些分配的地址都是物理内存连续的.但是随着碎片化的积累,连续物理内存 ...

  • Linux 内存管理之CMA

    什么是CMA CMA是reserved的一块内存,用于分配连续的大块内存.当设备驱动不用时,内存管理系统将该区域用于分配和管理可移动类型页面:当设备驱动使用时,此时已经分配的页面需要进行迁移,又用于连 ...

  • 一次解决Linux内核内存泄漏实战全过程

    2020 年转眼间白驹过隙般飞奔而去,在岁末年初的当口,笔者在回顾这一年程序员世界的大事件后,突然发觉如何避免程序员面向监狱编程是个特别值得一谈的话题. 什么是内存泄漏 程序向系统申请内存,使用完不需 ...

  • 【原创】(十)Linux内存管理 - zoned page frame allocator - 5

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...

  • Linux之free命令内存管理功能使用及案例

    测试用例1: [root@iZ25ja2kaemZ ~]# free --help free: invalid option -- '-' usage: free [-b|-k|-m|-g] [-l] ...

  •  Linux中的虚拟地址、物理地址和内存管理方式(一)

    一.简单介绍下早期的内存实现:(可略过) 1.在早期的计算机中,运行一个程序的特点是: (1)会把这些程序全都装入内存, (2)程序都是直接运行在内存上的,也就是说程序中访问的内存地址都是实际的物理内 ...

  • 【原创】(十四)Linux内存管理之page fault处理

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...