1.5 函数y=Asin(ωx+φ)的图象
看数学
我的工作总是尽力把真和美统一起来,但当我必须在两者中选一个时,我通常选择美。——外尔
温馨提醒:由于数学符号的特殊性,很多符号无法粘贴下来,具体内容请以上面的图片为准。
1.5 函数y=Asin(ωx+φ)的图象
一、要背的概念和公式:
1、学会盯准x、y,掌握相位变换(平移变换)。
2、掌握振幅变换(纵向的伸缩变换)和周期变换(横向的伸缩变换)。
3、记忆P54页概念(振幅、周期、频率、相位、初相)
二、例题和练习:课本例1、例2。 P55练习1、2、3、4、5。
三、注意事项:
1、熟练掌握相位变换、振幅变换和周期变换。
2、会结合图象求出y=Asin(ωx+φ)的解析式,尤其会用代点法求φ值。
3、熟记正余弦函数的各种性质,结合性质来解决y=Asin(ωx+φ)问题,。
四、要注意的题型:
1.函数y=Asin(ωx+φ)(A>0,ω>0)在同一个周期内,当x=12π时,取得最大值2;当x=127π时,取得最小值-2,那么函数的解析式为( )
A.y=21sin3π B.y=2sin3π C.y=2sin6π D.y=2sin6π
[答案] B
2.将最小正周期为2π的函数g(x)=sin(ωx+φ+4π)(ω>0,|φ|<2π)的图象向左平移4π个单位长度,得到偶函数图象,则满足题意的φ的一个可能值为________.
[答案] 4π,45π,-43π,-47π填一个即可
3.由函数y=2sin3xπ5与函数y=2(x∈R)的图象围成一个封闭图形,则这个封闭图形的面积为________.
[答案] 34π
4.用两种方法将函数y=sinx的图象变换为函数y=sin3π的图象.
5.如图为函数y=Asin(ωx+φ)的图象的一段.试确定函数y=Asin(ωx+φ)的解析式.
[解析] 由图可知A=3,B,0π,Cπ,05,
则πω+φ=2π5⇒ω=2,φ=3π.
所以y=3sin3π.