JASP简单一元线性回归案例实践

01
案例数据:胆固醇数据
先来看案例,这是【医咖会】平台关于线性回归的一个典型案例数据。
研究者拟在45-65岁健康男性人群中分析胆固醇浓度与看电视时间的关系。他们猜测可能存在正向相关,即看电视时间越长,胆固醇浓度越高。同时,他们也希望预测胆固醇浓度,并计算看电视时间对胆固醇浓度的解释能力。
在本例中,因变量是胆固醇浓度数据,自变量是看电视时间,仅有一个因素变量的线性回归可以称之为简单一元线性回归。
02
JASP统计操作
看电视时间与胆固醇浓度间是否存在线性关系,前面小兵已经写过文章了。大家看这一篇自行完成。
→ 用散点图法判断变量之间是否存在线性关系
依次点击菜单【Regression】→【linear regression】。
因变量:胆固醇浓度
自变量:看电视时间
此时JASP已经马上再右侧结果区域给出拟合结果。
03
结果解读
(1)R方=0.757,是回归方程的决定系数,表示Y变异的75.7%可以由X的变异来解释,或方程可解释Y变异的75.7%。
(2)对回归方程进行方差分析:F=131.401,P<0.001。拟合的回归模型有统计学意义,可以认为看电视时长和胆固醇浓度有直线关系。
如果大家问为什么JASP没有给出具体的P值,建议读一读下面这篇文章。对于SPSS或JASP来说,这些知识点都是相通的。
→ SPSS统计结果P=0.000,我该如何解读呢?
(3)对回归系数进行显著性t检验:Constant(回归方程的截距)与0之间的差别有统计学意义(t=22.311, P<0.001),斜率与0之间的差别有统计学意义(t=11.463, P<0.001)。
基于以上三个结果的解读,认为可建立回归方程。具体为:
Y=3.663+0.006*X,X为看电视时长,Y为胆固醇浓度。
04
我是小结
以上是最直接了当的线性回归过程,如果我们再严谨一些,则需要就残差进行诊断,判断线性回归的基本假设条件是否满足。
关于残差独立性,前面写过一篇文章,大家再回归一下。如下文。
→ JASP统计软件可提供Durbin-Watson检验的显著性P值
关于残差正态、残差齐次等假设条件的判断,小兵安排在后面来讨论,敬请期待。
本文完
文/图=数据小兵
更多JASP统计文章
一款全新的统计软件:JASP
JASP 0.12 新版本发布
JASP可读取3种外部数据文件
JASP连续数据之相关分析
JASP分类数据之相关分析
用JASP统计软件做单样本t检验
用JASP统计软件做配对样本t检验
JASP计算cohen's d效应量指标
JASP可视化建模:简单一元线性回归
logistic回归分析多重共线性检验
JASP统计分析案例:单因素方差分析
JASP做四格表卡方检验
JASP 0.13 新版发布
惊艳!JASP相关系数矩阵及热力图
用散点图判断变量间线性关系
JASP统计Durbin-Watson检验的显著性P值

(0)

相关推荐