反比例函数中“k”的几何意义
反比例图像上的任意一点向坐标轴作平行线,所围成的特殊四边形(矩形、菱形、正方形、平行四边形)的面积为|k|。
反比例图像上若有两点关于原点对称,且三角形有一边平行于坐标轴,那么此时三角形的面积为|k|。
由反比例函数与矩形面积的关系,我们可以得到反比例函数与三角形面积的关系如下:反比例图像上的点与坐标轴围成的三角形面积为1/2|k|。
我们还可以做如下变式:这些三角形都有一条边与坐标轴平行,以下三角形的面积也均为1/2|k|。
掌握了上述三角形的面积特点,我们可以利用转化的方法得到面积相等的三角形。转化的方法就是利用平行得到同底等高的三角形面积相等。
如图,S▲AOB=S▲ABC=1/2|k|。因此要学会转化成“k” 的几何意义,更重要的是要能从图形中发现这些基本图形。
将以上两类问题综合,我们可以得到下列几个图形的面积为2|k|。
反比例图像上的任意两点与原点围成的三角形面积等于这两点向x轴作垂线形成的梯形面积。
反比例图像上的任意两点分别向坐标轴作垂线,这两点的连线与垂足的连线互相平行。
赞 (0)