数与图(14)——微积分初步

在我上高中的年代,在高中的最后阶段,数学课里介绍了极限和导数的概念,好像还有幂函数的求导方法。真正开始学习微积分是在大学一年级,是高等数学的第一门课程。

高等数学的教学过程总是伴随着大量的证明以及公式推导,这个过程体现了数学的严谨性,维护了数学体系的完整与完美,但是它却蒙蔽了数学的趣味性和真实感。在离开大学很多年之后的今天,当我想把程序和微积分联系起来的时候,我才开始思考什么是微积分,为什么我们需要微积分,如何让一个初中生,甚至小学生也能理解微积分的概念。在经过一番思索之后,我似乎窥见了一丝端倪,于是拿来与大家分享。

要分享的内容分为三个主题:

  1. 什么是微积分

  2. 微积分的计算方法

  3. 为什么需要微积分

以上三个主题将分三期加以阐述。

一、什么是微积分

首先要明确“微积分”是一种运算,就跟四则运算一样。四则运算包括了加、减、乘、除四种运算,而微积分包含了求导积分两种运算。参与四则运算的元素是数字,而参与微积分运算的元素是函数。函数描述的是两个(或多个)变量之间的关系:给定一个x,就有唯一的y与之对应。通用的函数可以表示为 y=f(x),x称作自变量,y称作函数,也叫因变量,f则表示x与y之间的转换关系。之前我们讨论的幂函数就可以进行微积分运算。

1、微分

在微积分课程里,还有一个重要的概念就是微分,要理解求导和积分,首先要理解微分。形容词“微”表明了微积分运算的主要特征,微即微小、微观。把我们将要研究的函数绘制成曲线,然后将曲线上的某一点D放在显微镜下观察,当放大倍数足够大时,D点周围的曲线就变成了直线,取D附近的一个线段d。将d分别投影到x轴和y轴,就得到了dx和dy,如图1所示。

图1 微分的含义

图1中所标注的dx和dy就被称作微分,在进行微积分运算时,dx是对x轴的局部进行等分后的长度,而dy是两个等分点之间y的差值。

2、导数

在图1中,用dy除以dx,得到函数在D点的导数值,求导数值的过程叫做求导,导数是线段d所在的直线的斜率,它表示曲线在D点的陡度。这时如果增加显微镜的放大倍数,会发现线段d所在的直线与函数的曲线有两个交点,于是我们可以继续让线段d变短,从而使dx变小,当dx趋近于0时,线段d所在的直线与曲线的两个交点趋于重叠,当交点重叠时,直线与曲线相切,此时的导数是曲线在D点的切线的斜率,即,图1中夹角α的正切值tanα。

3、积分

简单地说,积分运算就是求面积的运算:在x轴上指定一个区间[x1, x2],求该区间内x轴与曲线所包围的面积,这里简称为曲线面积,如图2所示,积分约等于图中若干个红色矩形的面积之和,每个红色矩形的面积等于ya*dx,ya是曲线在dx范围内y的平均值。用这种方式求得的面积,与曲线面积之间有一定的误差,误差大小与dx的长度有关,当dx趋近于0时,ya的值趋近于y,则矩形面积之和趋近于曲线面积,即,真正的积分值。

图2 理解微积的含义

导数与积分分别表现函数不同侧面的特性,导数关注的是函数的局部特性,它表示函数曲线上某个点y值的变化速度,而积分关注的是一段区间内的特性,是函数值的累积特性。我们可以简单地将求导运算与除法运算相对照对:参与除法运算的元素是数字,而参与求导运算的元素是函数,确切地说,是函数的微分除以自变量的微分,即dy/dx。同样,可以把积分运算与加法、乘法运算相对照:积分是一系列的“微面积”之和,而“微面积”是y与dx之积。

理解了微积分的定义,就可以从定义演绎出计算方法。在下一篇文章中,我们将以幂函数为例,用程序方法来展示微积分的求解过程。

注:本文中的图1与图2取自于《数与图(9)——幂函数曲线》中的图6。

(0)

相关推荐

  • 《高等数学》

    同济大学经典教材,考研参考教材,40年畅销不衰作者:同济大学数学系编辑推荐高等数学课程包括微积分.微分方程.向量代数与空间解析几何.无穷级数等内容.从17世纪60年代牛顿.莱布尼茨创立微积分起,逐步形 ...

  • 微积分的本质是什么?

    一 微积分的本质是什么?我给自己设定的要求是本段没有一个公式,而且中学生都能听得懂. 求一个直角三角形的高,可以通过底长和夹角来推算,但如果三角形是一个曲边的呢?再用加角和底边儿推算就会产生很大的误差 ...

  • UC头条:万物皆“数”: 你最好学学微积分, 它是上帝的语言

    没有微积分,我们就不会拥有手机.计算机和微波炉,也不会拥有收音机.电视.为孕妇做的超声检查,以及为迷路的旅行者导航的GPS(全球定位系统).我们更无法分裂原子.破解人类基因组或者将宇航员送上月球,甚至 ...

  • 肿瘤思维导图14期-直肠癌CSCO 2020诊疗指南

    本期制作人 肿瘤思维导图-直肠癌 Tumor Mindmap -Rectal Cancer 肿 瘤 思 维 导 图       直肠癌(Rectal Cancer)是消化系统常见的恶性肿瘤之一,发病率 ...

  • ​每日一图——14亿公里外的回望(2020-5-28)

    如果有今天过生日的粉丝,留个言吧,这幅太空照片代表了对你的祝福,生日快乐! 看到土星环之间的两个小亮点了吗?猜猜它们是什么?那是地球和我们的卫星. 就在三年前,由于太阳暂时被土星遮挡住,卡西尼号探测器 ...

  • 思维导图—14时间 | 科学分配时间,提升记忆效率

    这是世界记忆大师袁文魁老师的超强记忆力课程,让我们一起拥有超强记忆,创造学习奇迹.如果觉得实用,请购买袁文魁老师的正版书籍和课程,以下是我根据购买的课程做的学习笔记. 横屏思维导图:一页纸原理,快速了 ...

  • CSCO2021肿瘤思维导图14期 | 直肠癌诊疗指南

    作品为系列作品,后续会不断更新和发布, 请点击和关注上面公众号第一时间获得最新信息! 20版思维导图制作人 21版思维导图更新 肿瘤思维导图-直肠癌 Tumor Mindmap -Colon Canc ...

  • 华三川绘百美图(14)

    华三川绘百美图(14)

  • 诗词记数首(14)---雪纷纷

    诗词记数首(14)---雪纷纷 近几日,工作需要,雨雪纷飞之中走访了好几个村子.今有闲暇,笔墨略以记下.美丽,触目所及皆是,在于发现. 01 吕店老庄 凌空雪飞舞,人间荒草枯: 晶莹昨日事,今我纸上书 ...

  • 数与图(1)

    App Inventor的画布组件,相当于一个平面直角坐标系,画布上的任何一点都可以用一对坐标(x,y)加以描述,而画布具有画笔的功能,可以在指定位置绘制点.线.圆等基本图形,这就使得开发者可以用程序 ...

  • 数与图(2)

    在上一篇文章『数与图(1)』中我们遗留下一个问题,当坐标轴的原点不在画布范围内时,程序会报错,现在我们就来解决这个问题. "原点不在画布范围内"可能有三种不同的情况: (1)x轴原 ...