方形自行车轮你见过吗?||趣味科学实验
【实验展示】
【实验原理】
悬链线 (Catenary)指的是一种曲线,指两端固定的一条(粗细与质量分布)均匀、柔软(不能伸长)的链条,在重力的作用下所具有的曲线形状,例如悬索桥等,因其与两端固定的绳子在均匀引力作用下下垂相似而得名。适当选择坐标系后,悬链线的方程是一个双曲余弦函数,其标准方程为:y=a cosh(x/a),其中,a为曲线顶点到横坐标轴的距离。
【知识拓展】
达·芬奇不仅是意大利的著名画家,他画的《蒙娜丽莎》带给了世界永恒的微笑,而且他还是数学家、物理学家和机械工程师,他学识渊博,多才多艺,几乎在每个领域都有他的贡献,他还是数学上第一个使用加、减符号的人,他甚至认为:“在科学上,凡是用不上数学的地方,凡是与数学没有交融的地方,都是不可靠的”。他本人在创作《蒙娜丽莎》时,认真地研究了主人公的心理,做了各种精确的数学计算,来确定人物的比例结构,以及半身人像与背景间关系的构图问题。当我们欣赏着他的《抱银貂的女人》中脖颈上悬挂的黑色珍珠项链时,我们注意的是项链与女人相互映衬的美与光泽,而不会像达·芬奇那样去苦苦思索这样一个问题:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的悬链线问题,达芬奇还没有找到答案就去世了。
与达芬奇的时代时隔170年,久负盛名的雅各布·伯努利在一篇论文中提出了确定悬链线性质(即方程)的问题。实际上,该问题存在多年且一直被人研究。伽利略就曾推测过悬链线是一条抛物线,但问题一直悬而未决。雅各布觉得,应用奇妙的微积分新方法也许可以解决这一问题。
但遗憾的是,面对这个苦恼的难题,他没有丝毫进展。一年后,雅各布的努力还是没有结果,可他却懊恼地看到他的弟弟约翰·伯努利发表了这个问题的正确答案。而自命不凡的约翰,却几乎不可能算是一个谦和的胜利者,因为他后来回忆说:
我哥哥的努力没有成功;而我却幸运得很,因为我发现了全面解开这道难题的技巧(我这样说并非自夸,我为什么要隐瞒真相呢?)……没错,为研究这道题,我整整一晚没有休息……不过第二天早晨,我就满怀欣喜地去见哥哥,他还在苦思这道难题,但毫无进展。他像伽利略一样,始终以为悬链线是一条抛物线。停下!停下!我对他说,不要再折磨自己去证明悬链线是抛物线了,因为这是完全错误的。
可笑的是,约翰成功地解出这道难题,仅仅牺牲了“整整一晚”的休息时间,而雅各布却已经与这道题持续搏斗了整整一年,这实在是一种“奇耻大辱”。