数量关系:统筹问题之空瓶换水

空瓶换水问题其实在很多年前,小学学习阶段就出现过。那么我们今天首先来回忆以前我们遇见的这么一个题目“楼下小卖部打着广告,说到4个可乐空瓶换1瓶可乐,小明家中有15个空瓶,那么小明最多可以喝到几瓶可乐?”我们看完这个题干是不是有一种熟悉的感觉呢,接下来我们就一起从这个题目开始分析吧!

15个空瓶首先可以换购3瓶可乐,还余下3个空瓶,小明喝完兑换的3瓶可乐之后,会产生3个空瓶,加上之前留下的3个空瓶,总共还剩6个空瓶;接下来6个空瓶又可以找小卖部兑换1瓶可乐,还余下2瓶;喝完这1瓶,产生1个空瓶,加上第二次剩下的2瓶,就会有3个空瓶,这时候不满足4个空瓶兑换一瓶,所以小明是否最多只能喝4瓶呢?聪明的你一定会发现虽然我现在只有3个空瓶,但是如果我找小卖部的阿姨借1个空瓶,我们就能再兑换一瓶可乐,并且还会产生1个空瓶再还给热心的小卖部阿姨。所以小明最多能够喝5瓶可乐。

我们看完这个题目的解答过程之后就会发现,题目本身难度并不大,最重要的就是仔细分析每一个过程所剩下的空瓶数量和最终兑换的时候是否保证最大化。如果这个时候你觉得你已经会了,那么接着看看下方的题目吧。

【例1】:若4个可乐空瓶能够免费兑换1瓶可乐,现在有123个可乐空瓶,最多可以免费喝到几瓶可乐?

读完这个题目之后,就有很多同学已经开始拿起手中的笔就开始解题了,但是同学们你们想想这个题目如果就直接开始讨论解题了,这得多麻烦呀!所以我们就得明白空瓶换水中的深层次交换规则。4个空瓶=1瓶水=1空瓶+1份水,化简成为3个空瓶=1份水。此题干信息就可以转化为,3个空瓶能够兑换一份可乐,123/3=41,所以最多可以喝到41瓶可乐。看完这个题目的讲解,同学们你们能明白了吗?

绝大多数考试同学们掌握上述的交换规则,空瓶换水问题就能迎刃而解了,但是有些考试之中问法会倒置一下,但是解题方法仍然没变。

【例2】6个空瓶可以换1瓶矿泉水,某班同学喝了213瓶矿泉水,其中有一些是用喝完的空瓶换来的,那么,他们至少要买多少瓶矿泉水?

解析:6个空瓶=1瓶水=1个空瓶+1份水,即5个空瓶=1份水。我们可以设最少买x瓶矿泉水,则能换x/5瓶矿泉水,根据题意有:x+x/5=213,解之得x=177.5。所以他们至少要买178瓶矿泉水。

(0)

相关推荐