YOLO 损失函数 loss
关于YOLO的损失函数,采用sum-squared error整合localization error(bboxes的坐标误差)和classification error,如果这两者的权值一致,会导致模型不稳定,训练发散。其中classification error包括两部分,一部分是没有包含object的box的confidence loss权值,另一部分则是有包含object的box的confidence loss权值。因此在损失函数计算的过程中,将提高localization error 的权值,降低没有包含object的box的confidence loss的权重。至于有包含object的box,它的confidence loss始终为1。
直接上图吧。

loss函数是分为三个部分的,即坐标预测,也就是我们上面所说的localization error,一部分是box的confidence预测,还有一部分是来自于类别的预测,后两部分就是classification error。
赞 (0)