《时间的形状》07-巨星登场
1900年,20世纪的第一场雪似乎来得比以往时候更晚一些,这不是一个平静的年份。在中国,孙中山接任了兴中会会长,正式登上政治舞台,他后来成为了中国第一个共和制总统;随后,义和团运动达到高潮,八国联军攻入北京,慈禧太后和光绪皇帝仓皇逃出北京城;而沉睡了近千年的敦煌莫高窟也在这一年被首次打开,中华文明史被重新发现;在欧洲,尼采死了,佛洛依德发表了他的传世名著《梦的解析》,巴黎正在举办世博会和第二届夏季奥运会。这一切,都带着创世纪的味道。
两朵乌云
4月27日,此时的英国伦敦天气还有点阴冷。在阿尔伯马街上的英国皇家研究所门前,人来人往,一位绅士彬彬有礼地扶着贵妇人上了马车,赶去听普契尼的歌剧《波希米亚人》。马车驶过后,两位老太太望着马车远去,羡慕地讨论着刚才那个贵妇人的礼帽式样。在两个老太太的身边,一个个穿着考究,表情严肃的绅士们走进了皇家研究所的大门。老太太们不知道,这些绅士都大有来头,全是当时欧洲最有名望的科学家,他们风尘仆仆地从欧洲各国赶来参加科学大会,这在科学界是一件大事。
皇家研究所的主席台上,站着一位白发苍苍的老者,此人就是德高望重而又以顽固著称,已经76岁高龄的开尔文勋爵(Kelvin,1824-1907)。他用他那特有的爱尔兰口音开始了他的演讲。“Thebeauty and clearness of the dynamical theory, which asserts heat and light tobe modes of motion, is at present obscured by two clouds. The first cameinto existence with the undulatory theory of light, and was dealt with by Fresneland Dr. Thomas Young; it involved the question, how could the earth movethrough an elastic solid, such as essentially is the luminiferousether?”
各位听我说,说到演讲,马丁路德金的《我有一个梦想》是在励志界里面被引用最多的,而在物理学界,开尔文的这段演讲是被引用最多的,所有关于物理学史的书一定会引用。虽然本书不是一本严肃的物理学史书,只是一本通俗的科普小书,但我也不能打破行业潜规则,必须要引用一下的。上面这段话的中文版本就很多了,五花八门,各种译法都有,考虑到我们都是物理学门外汉,所以我尽量用大家都容易理解的口语化的语言给大家翻译一下,至于精确性我就不管那么多了,业内人士尽管拍砖。
开尔文讲道:“在我眼里,我们已经取得的关于运动和力的理论是无比优美而又简洁明晰的,这些理论断言,光和热都不过是运动的某种表现方式(热是分子的运动,光是电磁波的运动)。但是我们却看到,在经典物理学这片蓝天上有两朵小乌云让我们感到有些不安。自从菲涅尔先生和托马斯·杨博士创立了光的波动学说以来,我们一直都在苦苦寻觅一个问题的答案,那就是:我们的地球是如何在以太中航行的?以太这种我们被称为'弹性固体’的看不见摸不着的物质存在的证据又在哪里?这就是我要说的第一朵乌云。”
毫无疑问,开尔文嘴里的这第一朵乌云就是指的麦克尔逊—莫雷实验不但没有能证明以太的存在,反而貌似恰恰证明了以太的不存在。估计大家还很好奇开尔文所说的第二朵乌云是什么,他所说的是黑体辐射实验的结果和理论不一致带来的困惑。这第二朵乌云牵出的又是一个长长的激动人心的故事,那是一个关于量子力学的故事,但那个故事不是本书的重点。
这第一朵乌云已经在我们耳旁隐隐地传来了雷声,很快就要遮云蔽日、掀起狂风大浪了。此时的物理学界,已是山雨欲来风满楼了。
巨星登场
时间终于走到了1905年,这一年后来被人们称为物理学的奇迹年,一百年后的2005年被定为“国际物理年”,全球举行了各式各样盛大的纪念活动,就是为了纪念1905年这个特殊的年份,或许人类文明史上再也不会出现这样的奇迹年了。这一年之所以被称为奇迹年,是因为我们本书的一号男主角在这一年中连续发表了五篇论文,每篇论文都像一颗耀眼的超新星照亮了宇宙,改变了物理学的纪元。
下面让我荣幸地介绍我们的一号男主角——阿尔伯特·爱因斯坦先生登场。虽然在各位的心目中,爱因斯坦的形象早已经固化,乱蓬蓬的头发,满是皱纹的脸,经常叼着的烟斗,鹰一样深邃的眼神,在很多人的心目中这个老头代表的就是科学。但是,爱因斯坦成为本书一号男主角的时候,可是一个只有26岁的英俊小伙子,完全不是你头脑中的那个形象。瞧瞧,这就是青年爱因斯坦。
下面是爱因斯坦应聘本书一号男主角时投递的简历:
姓名:阿尔伯特·爱因斯坦
性别:男
国籍:瑞士
年龄:26
婚姻:已婚
职业:专利局三级技术员
单位:瑞士伯尔尼专利局
学历:苏黎世联邦工业大学 物理专业 本科毕业
爱好:拉小提琴和思维实验
成就:没有(没结婚就把女朋友的肚子搞大了,不知道这个算不算)
如果这份简历被一个平庸的导演看到,不用想,肯定直接被扔进垃圾桶,桌上堆积如山的简历最次也是个博士的,教授、博导更是多如牛毛,怎么可能轮得上这个不知道从哪里冒出来的,专利局的一个小小的三级技术员呢?但是笔者向来不爱走寻常路,所以决定前往瑞士伯尔尼一探究竟。
作为未来人的好处就是我可以看到爱因斯坦,但是他却看不到我。我不会跟过去的世界产生任何交流,也无法影响过去的世界,我只是一个全能的观察者。(科学原理:假设此时你能突然出现在距离地球100光年外的地方,你拿起天文望远镜朝地球看,你看到的就是100年前的地球,只要精度足够,你就能看清地球上100年前发生的事情的每一个细节)。
爱因斯坦作为一个三级专利员,他的工作主要是审查提交过来的各种发明专利是否具备原创性,是否符合专利申请的标准。最近一段时间,爱因斯塔发现关于远距离对时方面的发明专利申请特别多,这是因为火车正在得到快速的发展,这个钢铁机器居然比马车跑得还快,并且不知疲倦,只要给它不停地吃煤,他就能不停地跑,而你给马不停地吃草只能把它撑死。因为火车跑得太快了,所以就催生了一个新的需求,就是要求能远距离对时。欧洲的各个城市之间还没有统一的时间标准,各个城市都拥有自己的地方时间,过去只有马车的时候,从一个城市到了另外一个城市,只需要把自己的钟表根据当地的时刻调整一下即可,也从来没人觉得会遇到什么麻烦。但是火车出现后,情况可就变了,火车跑得那么快,如果两个城市之间的钟表时间不调到一致的话,那么在同一个铁轨上跑的多辆火车很可能就会撞在一起,因此,对时绝对不是一件小事。
此时,利用电磁波来通讯的无线电技术已经逐步趋向成熟。我们前文已经说过,电磁波的传播速度是光速,所以利用无线电来实现远距离对时就是一个很靠谱的想法。很多这方面的发明专利开始涌向伯尔尼专利局,爱因斯坦因为是物理专业毕业的,所以这类发明往往都会交给他来审查。小爱很敬业,也很细致,为了提高自己的业务水平,小爱也跟着要思考电磁波、光速、时间这方面的问题。但是最近小爱有点儿烦,他申请二级专利员的申请书被驳回了,理由是专业能力还不够,这也促使小爱必须多努力思考,提升业务水平。
第一个原理:光速不变
每当专利局的工作结束后,小爱总是不急于回家,而是坐在办公室里,用自己用完的草稿纸卷起一根纸烟,点燃,深吸一口,往椅子上一靠,开始他的思考:
光为什么传播得那么快?因为它是一种电磁波,电磁波是怎么传播的呢?根据麦克斯韦那组漂亮的方程组可以看出来,振荡的磁场必然产生振荡的电场,而振荡的电场又必然产生振荡的磁场,如此循环下去就成了电磁波。那么,我是不是可以这样认为,电磁波的传播速度正是第一个“振荡”引起第二个“振荡”的反应速度呢?嗯,没错,这就好像一队人站成一排报数一样,听到一的人报二,听到二的人报三……光速其实就是这个报数的传递速度,它和我们常见的小球或者火车的运动速度显然有着很大的不同。火车从这里运动到那里,那就是火车这个实体的位置从这里移动到了那里,但是电磁波,也就是光,它的传播速度其实是“每一个报数的人,他们的反应速度”,真空充当的就是这个报数人的角色,而交替变换的电、磁场就是报出去的这个“数”。
1865年,伟大的麦克斯韦在《电磁场的动力学理论》中证明过,电磁波的传播速度只取决于传播介质。到了1890年,第一个在实验室中发现电磁波的天才赫兹也明确地指出,电磁波的波速与波源的运动速度无关。麦克斯韦的方程组实在是太美了,我深信蕴含如此深刻数学美的理论一定是正确的。
电磁波的速度和波源的运动速度无关,也就是光速和光源的运动速度无关,让我来想象一下这是什么概念,当我朝平静的湖中扔下一颗石子,不管我是垂直的从上空扔下去,还是斜着像打水漂一样的扔过去,这颗石子产生的涟漪都应该以相同的速度在水中扩散出去。
我可不可以做这样的一个思维实验:假设我现在一个人在黑漆漆的宇宙中飞行,虽然我飞得跟光一样快,但是因为没有任何参照物,我感觉不到自己的速度,就我自己的感觉而言和静止是一样的。这时候如果我身边有一束光,或者一个电磁波,我将看到什么呢?一束和我保持静止的光吗?一个静止的电磁波吗?也就是看到一个虽然在振荡的电磁场,但是它却不会交替感应下去吗?哦,不,这显然违背了麦克斯韦的方程组,波的速度和波源的运动速度无关,虽然我在以光速飞行,不论是我自己用发生装置发生一个电磁波还是我飞过一个电磁波发生装置,我看到的电磁波都应该是相同的,因为介质没有变。我将看到一个振荡中的电场能够产生振荡的磁场,而一个振荡中的磁场又能够产生振荡的电场,这个交替反应绝不会停下来。再想象一下报数的情况,如果我和这队报数的人都在一节火车车厢中,火车高速行驶,但是我并不能感觉到火车是静止的还是运动着的,我会看到报数人的反应速度提高了吗?这也显然很荒谬,火车跑得再快也应该跟报数人的反应速度无关,我应该仍然看到它们以同样的反应速度传递着“一、二、三……”才对啊。
这么说来,光速应该相对于任何参照系来说,都是恒定不变的。哦,我这个想法实在有点疯狂,但是MM实验是怎么解释的呢?MM实验得出的最直接的结论不就是光速不变吗?为什么我们首先要把这个简单的结论复杂化,想出各种各样的理论和假设来否定光速不变呢?为什么我不先承认这个实验结果是正确的,然后再去考虑怎么解释这个结果呢?
要解释MM实验为什么测量不到以太的存在,无非就是下面两种思路:
第一种思路:
假设一:以太是存在的。
假设二:因为某种原因,无法检测出以太。
结果:我们没有在MM实验中检测到以太。
第二种思路:
假设一:以太是不存在的。
结果:我们没有在MM实验中检测到以太。
根据奥卡姆剃刀原理,第二种思路更有可能接近真相,它需要的假设更少。
想到这里,爱因斯坦手上纸烟的烟灰掉落在地上,瞬间碎成一片。爱因斯坦从沉思中回过神来,对刚才的思考感到满意,他想这个问题已经不止一天两天了。他拿起笔在草稿纸上写下一句话:光速与光源的运动无关,对于任何参考系来说,光在真空中的传播速度恒为c。写完他马上匆匆收拾东西回家,再不回去,老婆该冲他发火了。