【学术论文】应用于无滤波级D类音频功放的新型死区时间控制系统
设计实现了一种可集成于无滤波级D类音频功率放大器内部的新型死区时间控制系统,通过全新的死区控制系统以及辅助功率管栅级电压分段式驱动电路的采用,有效改善了功放的总谐波失真。采用0.35 μm CMOS 工艺实现了集成这种新型死区时间控制系统的2.1 W单声道无滤波级全差分D类音频功放。在3.0 V~5.5 V电源电压范围、增益设置为单位增益、8 Ω喇叭负载下,输出功率1 W时,该D类音频功的总谐波失真(THD+N)为0.03%。
中文引用格式: 王绍清. 应用于无滤波级D类音频功放的新型死区时间控制系统[J].电子技术应用,2019,45(11):32-35,41.
英文引用格式: Wang Shaoqing. Integrated new dead-time control system for filter-less class D audio power amplifier[J]. Application of Electronic Technique,2019,45(11):32-35,41.
0 引言
1 电路原理
2 电路实现
,因此此段同时开启强驱动管MP3,将低端功率管的栅极电压快速上拉至开启阈值电压
附近。接下来,低端的栅极电压将进入从关断到开启的阶段,同样此阶段电流会有大的变化,应当关断强驱动管MP3,仅留下弱驱动管,使低端的栅极电压缓慢上升至1/2VCC。当低端的功率管的栅极电压达到1/2VCC时,低端功率管已经处于强导通的状态。因此,在后半段由1/2VCC继续上升到VCC的阶段可以打开强驱动管MP3,将低端功率管的栅极电压由1/2VCC迅速上拉至VCC,完成开启。这样高、低端功率管的栅极电压在关断、开启时分别形成了三段式控制波形,如图6所示。对高端功率管而言在并不影响系统EMI特性的0~1/2VCC阶段以及(VCC-Vth_P)~VCC完全关断阶段使用快速上拉关断,而在1/2VCC至VCC-Vth_P阶段保持慢速上拉。对低端功率管而言在0~Vth_N未开启阶段以及1/2VCC~VCC的强开启阶段使用快速开启,而Vth_N~1/2VCC由关断至强开启的阶段仅由弱驱动管开启,保持此段的慢速开启。同理,如图6所示,当PWM_P为H,即低端功率管关断,高端功率管开启时,电路的工作原理类似,同样引入低端栅极电压的开启阈值检测反馈至高端栅极驱动电路,形成高、低端开启和关断的三段式电压控制。这样的分段式管理,确保了系统的EMI特性,控制了由电流变化引起激荡效应对电源的扰动;并且将整个栅极电压的关断时间及开启时间进行合理的加速,减小了栅极上关断及开启时间对系统转换效率的影响。并且将需要关断端的栅极电压的阈值检测结果反馈给需要开启端的驱动电路,确保一端的功率管关断,才开始开启另一端的功率管,保证不会造成高低端间的直通,造成功率管损坏。同时由于一检测到需要关断端功率管的过驱动电压小于其开启阈值电压就开始开启另一端的功率管,并且此时另一端的功率管是迅速上拉至开启阈值电压附近的,因此从一端功率管关断转换到另一端功率管开启的状态,其转换死区时间几乎为零,大大降低了死区时间造成的非线性失真。
3 测试结果及分析
4 结论
参考文献
[1] LEE J W,LEE J S,LEE G S,et al.A 2 W BTL signal-chip class D power amplifier with very high efficiency for audio applications[C].ISCAS 2000 IEEE International Symposium on Circuits and System,2000:493-496.
[2] LAI Z,SMEDLY K M.A low distortion switching audio power amplifier[C].PESC95,1995:174-180.
[3] OLIVA A R,ANG SI S,VO T V.A multi-loop voltage-feedback filter less class-D switching audio amplifier using unipolar pulse-width-modulation[J].IEEE Transactions on Consumer Electronics,2004,50(1):311-319.
[4] 郑浩,刘延飞,王秋妍,等.D类放大器pop-click噪声抑制和饱和失真补偿技术[J].电子技术应用,2018,44(5):25-28.
[5] CHANG J S,GWEE B H,LON Y S,et al.A novel low-power low-voltage class D amplifier with feedback for improving THD power efficiency and gain linearity[J].Proceedings of IEEE International Symposium on Circuits and Systems,2001,1:I-635-I-638.
[6] SCORE M.Reducing the output filter of a class D amplifier[J].Analog Applications Journal,1999:19-23.
[7] MUGGLER P,CHEN W,JONES C,et al.A filter free class D audio amplifier with 86% power efficiency[C].Proceedings of the 2004 International Symposium on Circuits and Systems,2004.ISCAS′04,2004:I-1036-1039.
[8] NIELSEN K.A review and comparison of pulse width modulation(PWM) methods for analog and digital input switching power amplifiers[C].102nd AES Convention,1997.
[9] CHIERCHIE F,STEFANAZZI L,PAOLINI E,et al.Frequency analysis of PWM inverters with dead-time for arbitrary modulating signals[J].IEEE Transactions on Power Electronics,2014,29(6):2850-2860.
[10] BEIRANVAND R,RASHIDIAN B,ZOLGHADRI M,et al.Optimizing the normalized dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter[J].IEEE Transactions on Power Electronics,2011,26(2):462-472.
[11] BALMELLI P,KHOURY J M,VIEGAS E.A low EMI 3-W audio class-D amplifier compatible with AM/FM radio[J].IEEE Journal of Solid-State Circuits,2013,48(8):1771-1780.
[12] 王宇星.双模式控制防失真K类音频功率放大器设计[J].电子技术应用,2016,42(4):31-34.
作者信息:
王绍清
(矽恩微电子厦门有限公司,福建 厦门361005)
原创声明:此内容为AET网站原创,未经授权禁止转载。