填空题讲解14:规律型有关的综合问题

如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是    .
参考答案:
解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),
第2次接着运动到点(2,0),第3次接着运动到点(3,2),
∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,
∴横坐标为运动次数,经过第2011次运动后,动点P的横坐标为2011,
纵坐标为1,0,2,0,每4次一轮,
∴经过第2011次运动后,动点P的纵坐标为:2011÷4=502余3,
故纵坐标为四个数中第三个,即为2,
∴经过第2011次运动后,动点P的坐标是:(2011,2),
故答案为:(2011,2).
考点分析:
点的坐标;规律型。
题干分析:
根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.
解题反思:
此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.
(0)

相关推荐

  • 初中数学题型汇总:图形的平移

    [方法技巧] 图形的平移规律    找特殊点 1.图形的平移即是图形中各个点的平移,解题时只需选取线段端点或三角形顶点等这样的特殊点即可. 2在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去 ...

  • 【原创】抛物线中的必会动点最值基础题目,熟练掌握才能挑战难题

    掌握一种思路分析方法,胜过做千道题!  本题采用历史文件介绍过的方法分析题目,希望大家能从中领悟解题思路.只有掌握题目的分析方法,才是根本. 本题难度比较小,属于抛物线中动点最值的基础题目,必须熟练掌 ...

  • 中考数学一轮复习-位置的确定、函数及图象

    [命题规律]本节内容包括:1.平面直角坐标系中点的坐标特征:(1)各象限内点的坐标特征;(2)象限中对称点的坐标特征;(3)点的平移.2.函数自变量的取值范围.3.函数及其图象判断.考查题型均为选择题 ...

  • 填空题讲解86:二次函数有关的综合题

    抛物线y=﹣4x²/9+8x/3+2与y轴交于点A,顶点为B.点P是x轴上的一个动点,当点P的坐标是      时,|PA﹣PB|取得最小值. 参考答案: 考点分析: 二次函数的性质:轴对称﹣最短路线 ...

  • 填空题讲解72:几何变换有关的综合问题

    如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的周长是     . 参考答案: 考点分析: 旋转的性质:等腰直角三角形:正 ...

  • 填空题讲解71:几何有关的综合问题分析

    如图,在Rt△ABC中,∠BAC=90°,AB=AC=2√2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S2,y=S1+S ...

  • 填空题讲解70:三角形有关的综合问题

    在△ABC中,D,E分別是AB,AC的中点,AC=10.F是DE上一点.连接AF,CF,DF=1,若∠AFC=90°,则BC的长度为   . 参考答案: 考点分析: 三角形中位线定理. 题干分析: 如 ...

  • 填空题讲解66:几何变换有关的综合问题分析

    如图,△COD是△AOB绕点O顺时针方向旋转30°后所得的图形,点C恰好在AB上,∠AOD=90°. (1)∠B的度数是     : (2)若AO=2√3,CD与OB交于点E,则BE=      . ...

  • 填空题讲解62:二次函数有关的综合问题

    如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2/2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是      . 参 ...

  • 填空题讲解58:圆有关的综合问题

    如图,⊙O的半径为2,点A.C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=√3,则图中阴影部分的面积为    . 参考答案: 考点分析: 扇形面积的计算. 题干分析: 通 ...

  • 填空题讲解57:二次函数有关的综合题

    如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为"果圆",已知点A.B.C.D分别是"果圆"与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2 ...

  • 填空题讲解43:二次函数有关的综合问题

    如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为"果圆",已知点A.B.C.D分别是"果圆"与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2 ...