不看后悔!基于图神经网络的交通预测论文合集
最近啊~学姐为了工作在研究时间序列方面的知识,我发现交通预测真的很有趣,然后就准备深入研究一下,第一步就是去找论文啦~都说读论文头秃,其实找论文也头秃,学姐的头发又少了一层。
所以为了让我可爱的粉丝们以后不用再花植发的钱,再买护肝片,再保温杯里热牛奶泡枸杞,学姐决定把我的劳动成果——找到的有关于“图神经网络的交通预测的论文”贡献给大家!需要的就自取叭!(但能不能麻烦各位给点个👍,qvq)
交通预测图神经网络论文合集
Journal(期刊)47篇
01
作者:
Xia T, Lin J, Li Y, et al.
论文名称:
3DGCN: 3-Dimensional Dynamic Graph Convolutional Network for Citywide Crowd Flow Prediction[J].
刊名及日期:
ACM Transactions on Knowledge Discovery from Data (TKDD), 2021, 15(6): 1-21.
论文链接:
https://dl.acm.org/doi/abs/10.1145/3451394
代码:
https://github.com/FIBLAB/3D-DGCN
02
作者:
Zhang H, Chen L, Cao J, et al.
论文名称:
A Combined Traffic Flow Forecasting Model Based on Graph Convolutional Network and Attention Mechanism[J].
刊名及日期:
International Journal of Modern Physics C, 2021.
论文链接:
https://www.worldscientific.com/doi/abs/10.1142/S0129183121501588
03
作者:
Zhang T, Ding W, Chen T, et al.
论文名称:
A Graph Convolutional Method for Traffic Flow Prediction in Highway Network[J].
刊名及日期:
Wireless Communications and Mobile Computing, 2021, 2021.
论文链接:https://www.hindawi.com/journals/wcmc/2021/1997212/
04
作者:
Chen P, Fu X, Wang X.
论文名称:
A Graph Convolutional Stacked Bidirectional Unidirectional-LSTM Neural Network for Metro Ridership Prediction[J].
刊名及日期:
IEEE Transactions on Intelligent Transportation Systems, 2021.
论文链接:
https://ieeexplore.ieee.org/abstract/document/9381554
论文链接:https://www.hindawi.com/journals/wcmc/2021/1997212/
05
作者:
Zhang S, Guo Y, Zhao P, et al.
论文名称:
A Graph-Based Temporal Attention Framework for Multi-Sensor Traffic Flow Forecasting[J].
刊名及日期:
IEEE Transactions on Intelligent Transportation Systems, 2021.
论文链接:
https://ieeexplore.ieee.org/abstract/document/9406409/
代码:
https://github.com/skzhangPKU/GTA
06
作者:
Han Y, Peng T, Wang C, et al.
论文名称:
A Hybrid GLM Model for Predicting Citywide Spatio-Temporal Metro Passenger Flow[J].
刊名及日期:
ISPRS International Journal of Geo-Information, 2021, 10(4): 222.
论文链接:
https://www.mdpi.com/1059488
07
作者:
Chen L, Bei L, An Y, et al.
论文名称:
A Hyperparameters automatic optimization method of time graph convolution network model for traffic prediction[J].
刊名及日期:
Wireless Networks, 2021: 1-9.
论文链接:
https://link.springer.com/article/10.1007/s11276-021-02672-5
08
作者:
Feng S, Ke J, Yang H, et al.
论文名称:
A Multi-Task Matrix Factorized Graph Neural Network for Co-Prediction of Zone-Based and OD-Based Ride-Hailing Demand[J].
刊名及日期:
IEEE Transactions on Intelligent Transportation Systems, 2021.
论文链接:
https://ieeexplore.ieee.org/abstract/document/9376697/
09
作者:
Zhu J, Tao C, Deng H, et al.
论文名称:
AST-GCN: Attribute-Augmented Spatiotemporal Graph Convolutional Network for Traffic Forecasting[J].
刊名及日期:
IEEE Access.
论文链接:
https://ieeexplore.ieee.org/document/9363197
代码:
https://github.com/lehaifeng/T-GCN/tree/master/AST-GCN
10
作者:
Buroni G, Lebichot B, Bontempi G.
论文名称:
AST-MTL: An Attention-based Multi-Task Learning Strategy for Traffic Forecasting[J].
刊名及日期:
IEEE Access, 2021.
论文链接:
https://ieeexplore.ieee.org/abstract/document/9439877/
代码:
https://github.com/giobbu/AST-MTL
11
作者:
Jiang H, Li L, Xian H, et al.
论文名称:
Crowd Flow Prediction for Social Internet-of-Things Systems Based on the Mobile Network Big Data[J].
刊名及日期:
IEEE Transactions on Computational Social Systems, 2021.
论文链接:https://ieeexplore.ieee.org/abstract/document/9378810/
12
作者:
Pan C, Zhu J, Kong Z, et al.
论文名称:
DC-STGCN: Dual-Channel Based Graph Convolutional Networks for Network Traffic Forecasting[J].
刊名及日期:
Electronics, 2021, 10(9): 1014.
论文链接:
https://www.mdpi.com/1085378
13
作者:
Bai L, Yao L, Wang X, et al.
论文名称:
Deep spatial-temporal sequence modeling for multi-step passenger demand prediction[J].
刊名及日期:
Future Generation Computer Systems, 2021.
论文链接:https://www.sciencedirect.com/science/article/pii/S0167739X21000832
14
作者:
Zhang C, Zhang S, James J Q, et al.
论文名称:
FASTGNN: A Topological Information Protected Federated Learning Approach For Traffic Speed Forecasting[J].
刊名及日期:
IEEE Transactions on Industrial Informatics, 2021.
论文链接:https://ieeexplore.ieee.org/abstract/document/9340313
15
作者:
Yang X, Zhu Q, Li P, et al.
论文名称:
Fine-grained predicting urban crowd flows with adaptive spatio-temporal graph convolutional network[J].
刊名及日期:
Neurocomputing, 2021, 446: 95-105.
论文链接:
https://www.sciencedirect.com/science/article/pii/S0925231221003477
16
作者:
Fang M, Tang L, Yang X, et al.
论文名称:
FTPG: A Fine-Grained Traffic Prediction Method With Graph Attention Network Using Big Trace Data[J].
刊名及日期:
IEEE Transactions on Intelligent Transportation Systems, 2021.
论文链接:https://ieeexplore.ieee.org/abstract/document/9329073
17
作者:
Wang X, Chai Y, Li H, et al.
论文名称:
Graph Convolutional Network-based Model for Incident-related Congestion Prediction: A Case Study of Shanghai Expressways[J].
刊名及日期:
ACM Transactions on Management Information Systems (TMIS), 2021, 12(3): 1-22.
论文链接:
https://dl.acm.org/doi/abs/10.1145/3451356
18
作者:
Wang Q, Xu C, Zhang W, et al.
论文名称:
GraphTTE: Travel Time Estimation Based on Attention-Spatiotemporal Graphs[J].
刊名及日期:
IEEE Signal Processing Letters, 2021.
论文链接:https://ieeexplore.ieee.org/abstract/document/9314202
19
作者:
Jin C, Ruan T, Wu D, et al.
论文名称:
HetGAT: a heterogeneous graph attention network for freeway traffic speed prediction[J].
刊名及日期:
Journal of Ambient Intelligence and Humanized Computing, 2021.
论文链接:
https://link.springer.com/article/10.1007/s12652-020-02807-0
20
作者:
An J, Guo L, Liu W, et al.
论文名称:
IGAGCN: Information geometry and attention-based spatiotemporal graph convolutional networks for traffic flow prediction[J].
刊名及日期:
Neural Networks, 2021.
论文链接:
https://www.sciencedirect.com/science/article/pii/S0893608021002318
21
作者:
Ke J, Feng S, Zhu Z, et al.
论文名称:
Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based Approach[J].
刊名及日期:
Transportation Research Part C: Emerging Technologies, 2021, 127: 103063.
论文链接:
https://www.sciencedirect.com/science/article/abs/pii/S0968090X21000905
22
作者:
Guo S, Lin Y, Wan H, et al.
论文名称:
Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting[J].
刊名及日期:
IEEE Transactions on Knowledge and Data Engineering, 2021.
论文链接:
https://ieeexplore.ieee.org/abstract/document/9346058
23
作者:
Zou X, Zhang S, Zhang C, et al.
论文名称:
Long-term Origin-Destination Demand Prediction with Graph Deep Learning[J].
刊名及日期:
IEEE Transactions on Big Data, 2021.
论文链接:
https://ieeexplore.ieee.org/document/9369004
24
作者:
James J Q, Markos C, Zhang S.
论文名称:
Long-Term Urban Traffic Speed Prediction With Deep Learning on Graphs[J].
刊名及日期:
IEEE Transactions on Intelligent Transportation Systems, 2021.
论文链接:
论文链接:
https://ieeexplore.ieee.org/abstract/document/9399848/
25
作者:
Fang Z, Pan L, Chen L, et al.
论文名称:
MDTP: A Multi-source Deep Traffic Prediction Framework over Spatio-Temporal Trajectory Data[J].
刊名及日期:
Proc. VLDB Endow., 2021, 14(8): 1289-1297.
论文链接:
http://www.vldb.org/pvldb/vol14/p1289-gao.pdf
26
作者:
Zhao D, Ju C, Zhu G, et al.
论文名称:
MePark: Using Meters as Sensors for Citywide On-Street Parking Availability Prediction[J].
刊名及日期:
IEEE Transactions on Intelligent Transportation Systems, 2021.
论文链接:
https://ieeexplore.ieee.org/abstract/document/9387634/
27
作者:
Wang J, Zhang Y, Wei Y, et al.
论文名称:
Metro Passenger Flow Prediction via Dynamic Hypergraph Convolution Networks[J].
刊名及日期:
IEEE Transactions on Intelligent Transportation Systems, 2021. (still empty on 2021/5/8)
论文链接:
https://ieeexplore.ieee.org/abstract/document/9410439/
代码:
https://github.com/JCwww/DSTHGCN
28
作者:
Sun B, Zhao D, Shi X, et al.
论文名称:
Modeling Global Spatial–Temporal Graph Attention Network for Traffic Prediction[J].
刊名及日期:
IEEE Access, 2021.
论文链接:
https://ieeexplore.ieee.org/document/9316302
29
作者:
Tang J, Liang J, Liu F, et al.
论文名称:
Multi-community passenger demand prediction at region level based on spatio-temporal graph convolutional network[J].
刊名及日期:
Transportation Research Part C: Emerging Technologies, 2021, 124: 102951.
论文链接:
https://www.sciencedirect.com/science/article/pii/S0968090X20308482
30
作者:
Li G, Knoop V L, van Lint H.
论文名称:
Multistep traffic forecasting by dynamic graph convolution: Interpretations of real-time spatial correlations[J].
刊名及日期:
Transportation Research Part C: Emerging Technologies, 2021, 128: 103185.
论文链接:
https://www.sciencedirect.com/science/article/pii/S0968090X21002011
代码:
https://github.com/RomainLITUD/DGCN_traffic_forecasting
31
作者:
Fang S, Prinet V, Chang J, et al.
论文名称:
MS-Net: Multi-Source Spatio-Temporal Network for Traffic Flow Prediction[J].
刊名及日期:
IEEE Transactions on Intelligent Transportation Systems, 2021.
论文链接:
https://ieeexplore.ieee.org/abstract/document/9385959/
32
作者:
Wang F, Xu J, Liu C, et al.
论文名称:
On prediction of traffic flows in smart cities: a multitask deep learning based Approach[J].
刊名及日期:
World Wide Web, 2021: 1-19.
论文链接:
https://link.springer.com/article/10.1007/s11280-021-00877-4
33
作者:
Liu M, Li L, Li Q, et al.
论文名称:
Pedestrian Flow Prediction in Open Public Places Using Graph Convolutional Network[J].
刊名及日期:
ISPRS International Journal of Geo-Information, 2021, 10(7): 455.
论文链接:
https://www.mdpi.com/2220-9964/10/7/455
34
作者:
Ke J, Qin X, Yang H, et al.
论文名称:
Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network[J].
刊名及日期:
Transportation Research Part C: Emerging Technologies, 2021, 122: 102858.
论文链接:
https://www.sciencedirect.com/science/article/pii/S0968090X20307580
代码:
https://github.com/kejintao/ST-ED-RMGC
35
作者:
Li M, Gao S, Lu F, et al.
论文名称:
Prediction of human activity intensity using the interactions in physical and social spaces through graph convolutional networks[J].
刊名及日期:
International Journal of Geographical Information Science, 2021: 1-28.
论文链接:
https://www.tandfonline.com/doi/abs/10.1080/13658816.2021.1912347
代码:https://doi.org/10.6084/m9.figshare.11829306.v1
36
作者:
Yang J M, Peng Z R, Lin L.
论文名称:
Real-time spatiotemporal prediction and imputation of traffic status based on LSTM and Graph Laplacian regularized matrix factorization[J].
刊名及日期:
Transportation Research Part C: Emerging Technologies, 2021, 129: 103228.
论文链接:
https://www.sciencedirect.com/science/article/pii/S0968090X21002412
代码:
https://github.com/Vadermit/TransPAI
38
作者:
Jiang M, Chen W, Li X.
论文名称:
S-GCN-GRU-NN: A novel hybrid model by combining a Spatiotemporal Graph Convolutional Network and a Gated Recurrent Units Neural Network for short-term traffic speed forecasting[J].
刊名及日期:
Journal of Data, Information and Management, 1-20.
论文链接:
https://link.springer.com/article/10.1007/s42488-020-00037-9
39
作者:
Agafonov A A.
论文名称:
Short-Term Traffic Data Forecasting: A Deep Learning Approach[J].
刊名及日期:
Optical Memory and Neural Networks, 2021, 30(1): 1-10.
论文链接:
https://link.springer.com/article/10.3103/S1060992X21010021
代码:
https://github.com/ant-agafonov/stgcn-lstm
40
作者:
Tian C, Chan W K.
论文名称:
Spatial‐temporal attention wavenet: A deep learning framework for traffic prediction considering spatial‐temporal dependencies[J].
刊名及日期:
IET Intelligent Transport Systems, 2021.
论文链接:
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12044
代码:
https://github.com/CYBruce/STAWnet
41
作者:
Bui K H N, Cho J, Yi H.
论文名称:
Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues[J].
刊名及日期:
Applied Intelligence, 2021: 1-12.
论文链接:
https://link.springer.com/article/10.1007/s10489-021-02587-w
42
作者:
Li D, Lasenby J.
论文名称:
Spatiotemporal Attention-Based Graph Convolution Network for Segment-Level Traffic Prediction[J].
刊名及日期:
IEEE Transactions on Intelligent Transportation Systems, 2021.
论文链接:
https://ieeexplore.ieee.org/abstract/document/9442362/
43
作者:
Li X, Wang H, Sun P, et al.
论文名称:
Spatiotemporal Features—Extracted Travel Time Prediction Leveraging Deep-Learning-Enabled Graph Convolutional Neural Network Model[J].
刊名及日期:
Sustainability 2021, 13, 1253.
论文链接:
https://www.mdpi.com/2071-1050/13/3/1253
44
作者:
Tang J, Zeng J.
论文名称:
Spatiotemporal gated graph attention network for urban traffic flow prediction based on license plate recognition data[J].
刊名及日期:
Computer‐Aided Civil and Infrastructure Engineering, 2021.
论文链接:
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12688
45
作者:
Zi W, Xiong W, Chen H, et al.
论文名称:
TAGCN: Station-level demand prediction for bike-sharing system via a temporal attention graph convolution network[J].
刊名及日期:
Information Sciences, 2021, 561: 274-285.
论文链接:
https://www.sciencedirect.com/science/article/pii/S0020025521001031
46
作者:
Zhang J, Chen H, Fang Y.
论文名称:
TaxiInt: Predicting the Taxi Flow at Urban Traffic Hotspots Using Graph Convolutional Networks and the Trajectory Data[J].
刊名及日期:
Journal of Electrical and Computer Engineering, 2021, 2021.
论文链接:
https://www.hindawi.com/journals/jece/2021/9956406/
47
作者:
Xu C, Zhang A, Xu C, et al.
论文名称:
Traffic speed prediction: spatiotemporal convolution network based on long-term, short-term and spatial features[J].
刊名及日期:
Applied Intelligence, 2021: 1-19.
论文链接:
https://link.springer.com/article/10.1007/s10489-021-02461-9
代码:
https://ieee-dataport.org/documents/pems
Conference(会议)25篇
01
作者:
Chen Z, Wu H, O'Connor N E, et al.
论文名称:
A Comparative Study of Using Spatial-Temporal Graph Convolutional Networks for Predicting Availability in Bike Sharing Schemes[C].
会议名称及时间:
2021 IEEE 24rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2021.
论文链接:
https://arxiv.org/abs/2104.10644
02
作者:
Li B, Guo T, Wang Y, et al.
论文名称:
Adaptive Graph Co-Attention Networks for Traffic Forecasting[C]
会议名称及时间:
//PAKDD (1). 2021: 263-276.
论文链接:
https://link.springer.com/chapter/10.1007/978-3-030-75762-5_22
03
作者:
Lee H, Park C, Jin S, et al.
论文名称:
An Empirical Experiment on Deep Learning Models for Predicting Traffic Data[C].
会议名称及时间:
Accepted at 37th IEEE International Conference on Data Engineering (ICDE 2021), 2021.
论文链接:
https://arxiv.org/abs/2105.05504
04
作者:
Ye J, Sun L, Du B, et al.
论文名称:
Coupled Layer-wise Graph Convolution for Transportation Demand Prediction[C].
会议名称及时间:
Proceedings of the AAAI Conference on Artificial Intelligence. 2021.
论文链接:
https://arxiv.org/abs/2012.08080
代码:
https://github.com/Essaim/CGCDemandPrediction
05
作者:
Meng C, Rambhatla S, Liu Y.
论文名称:
Cross-Node Federated Graph Neural Network for Spatio-Temporal Data Modeling[C].
会议名称及时间:
In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '21). Association for Computing Machinery. 2021.
论文链接:
https://arxiv.org/abs/2106.05223
06
作者:
Shang C, Chen J, Bi J.
论文名称:
Discrete Graph Structure Learning for Forecasting Multiple Time Series[C].
会议名称及时间:
International Conference on Learning Representations (ICLR), 2021.
论文链接:
https://openreview.net/forum?id=WEHSlH5mOk
代码:
https://github.com/chaoshangcs/GTS
07
作者:
Oreshkin B N, Amini A, Coyle L, et al.
论文名称:
FC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic Forecasting[C].
会议名称及时间:
Proceedings of the AAAI Conference on Artificial Intelligence. 2021.
论文链接:
https://arxiv.org/abs/2007.15531v1
代码:
https://github.com/boreshkinai/fc-gaga
08
作者:
Dees B S, Xu Y L, Constantinides A G, et al.
论文名称:
Graph Theory for Metro Traffic Modelling[C].
会议名称及时间:
International Joint Conference on Neural Networks (IJCNN), 2021.
论文链接:
https://arxiv.org/abs/2105.04991
09
作者:
Guo K, Hu Y, Sun Y, et al.
论文名称:
Hierarchical Graph Convolution Networks for Traffic Forecasting[C].
会议名称及时间:
Proceedings of the AAAI Conference on Artificial Intelligence. 2021.
论文链接:
https://github.com/guokan987/HGCN/blob/main/paper/3399.GuoK.pdf
代码:
https://github.com/guokan987/HGCN
10
作者:
Wang S, Zhang M, Miao H, et al.
论文名称:
MT-STNets: Multi-Task Spatial-Temporal Networks for Multi-Scale Traffic Prediction[C]
会议名称及时间:
//Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). Society for Industrial and Applied Mathematics, 2021: 504-512.
论文链接:
https://epubs.siam.org/doi/abs/10.1137/1.9781611976700.57
11
作者:
Jing B, Tong H, Zhu Y.
论文名称:
Network of Tensor Time Series[C].
会议名称及时间:
Accepted by WWW 2021.
论文链接:
https://arxiv.org/abs/2102.07736
12
作者:
Lin H, Fan Y, Zhang J, et al.
论文名称:
REST: Reciprocal Framework for Spatiotemporal-coupled Predictions[C]
会议名称及时间:
//Proceedings of the Web Conference 2021. 2021: 3136-3145.
论文链接:
https://dl.acm.org/doi/abs/10.1145/3442381.3449928
13
作者:
Pal S, Ma L, Zhang Y, et al.
论文名称:
RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting[C].
会议名称及时间:
Accepted at the International Conference on Machine Learning (ICML) 2021.
论文链接:
https://arxiv.org/abs/2106.06064
代码:
https://github.com/networkslab/rnn_flow
14
作者:
Yang G, Wen J, Yu D, et al.
论文名称:
Spatial-Temporal Dilated and Graph Convolutional Network for traffic prediction[C]
会议名称及时间:
//2020 Chinese Automation Congress (CAC). IEEE, 2020: 802-806.
论文链接:
https://ieeexplore.ieee.org/abstract/document/9327103/
15
作者:
Mengzhang L, Zhanxing Z.
论文名称:
Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting[C].
会议名称及时间:
Proceedings of the AAAI Conference on Artificial Intelligence. 2021.
论文链接:
https://arxiv.org/abs/2012.09641
代码:
https://github.com/MengzhangLI/STFGNN
16
作者:
Fang Z, Long Q, Song G, et al.
论文名称:
Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting[C].
会议名称及时间:
In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '21). Association for Computing Machinery. 2021.
论文链接:
https://arxiv.org/abs/2106.12931
代码:
https://github.com/square-coder/STGODE
17
作者:
Hong G, Wang Z, Han T, et al.
论文名称:
Spatiotemporal Multi-Graph Convolutional Network for Taxi Demand Prediction[C]
会议名称及时间:
//2021 11th International Conference on Information Science and Technology (ICIST). IEEE, 2021: 242-250.
论文链接:
https://ieeexplore.ieee.org/abstract/document/9440573/
18
作者:
Roy A, Roy K K, Ali A A, et al.
论文名称:
SST-GNN: Simplified Spatio-temporal Traffic forecasting model using Graph Neural Network[C].
会议名称及时间:
Accepted for publication in 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-2021).
论文链接:
https://arxiv.org/abs/2104.00055
19
作者:
Fu H, Wang Z, Yu Y, et al.
论文名称:
Traffic Flow Driven Spatio-Temporal Graph Convolutional Network for Ride-Hailing Demand Forecasting[C]
会议名称及时间:
//PAKDD (1). 2021: 754-765.
论文链接:
https://link.springer.com/chapter/10.1007/978-3-030-75762-5_59
20
作者:
Zhang X, Huang C, Xu Y, Xia L, et al.
论文名称:
Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network[C].
会议名称及时间:
Proceedings of the AAAI Conference on Artificial Intelligence. 2021.
论文链接:
http://urban-computing.com/pdf/AAAI2021TrafficFlow.pdf
代码:
https://github.com/jillbetty001/ST-GDN
21
作者:
Li M, Tong P, Li M, et al.
论文名称:
Traffic Flow Prediction with Vehicle Trajectories[C].
会议名称及时间:
Proceedings of the AAAI Conference on Artificial Intelligence. 2021.
论文链接:
https://wands.sg/publications/full_list/papers/AAAI_21_1.pdf
代码:
https://github.com/mingqian000/TrGNN
22
作者:
Yang Q, Zhong T, Zhou F.
论文名称:
Traffic Speed Forecasting Via Spatio-Temporal Attentive Graph Isomorphism Network[C]
会议名称及时间:
//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 7943-7947.
论文链接:
https://ieeexplore.ieee.org/abstract/document/9414596/
23
作者:
Chen X, Wang J, Xie K.
论文名称:
TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on Graph Neural Networks and Continual Learning[C]
会议名称及时间:
//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI. 2021.
论文链接:
https://arxiv.org/abs/2106.06273
代码:
https://github.com/AprLie/TrafficStream
24
作者:
Roy A, Roy K K, Ali A A, et al.
论文名称:
Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph Neural Network[C].
会议名称及时间:
2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021.
论文链接:
https://arxiv.org/abs/2104.12518
代码:
https://github.com/AmitRoy7781/USTGCN
25
作者:
Chen Y, Segovia-Dominguez I, Gel Y R.
论文名称:
Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting[C].
会议名称及时间:
Accepted at the International Conference on Machine Learning (ICML) 2021.
论文链接:
https://arxiv.org/abs/2105.04100
代码:
https://github.com/Z-GCNETs/Z-GCNETs.git
Preprint(文章)11篇
01
作者:
Fu J, Zhou W, Chen Z.
文章名称:
Bayesian Graph Convolutional Network for Traffic Prediction[J].
编号及日期:
arXiv preprint arXiv:2104.00488, 2021.
论文链接:
https://arxiv.org/abs/2104.00488
02
作者:
Lin H, Gao Z, Wu L, et al.
文章名称:
Conditional Local Filters with Explainers for Spatio-Temporal Forecasting[J].
编号及日期:
arXiv preprint arXiv:2101.01000, 2021.
论文链接:
https://arxiv.org/abs/2101.01000v1
03
作者:
Li F, Feng J, Yan H, et al.
文章名称:
Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark and Solution[J].
编号及日期:
arXiv preprint arXiv:2104.14917, 2021.
论文链接:
https://arxiv.org/abs/2104.14917
代码:
https://github.com/tsinghua-fib-lab/Traffic-Benchmark
04
作者:
Chen J, Li K, Li K, et al.
文章名称:
Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing System Using Gated Graph Neural Network[J].
编号及日期:
arXiv preprint arXiv:2101.07425, 2021. Link
论文链接:
https://arxiv.org/abs/2101.07425
05
作者:
Lu Y, Ding H, Ji S, et al.
文章名称:
Dual attentive graph neural network for metro passenger flow prediction[J].
编号及日期:
Researchgate preprint. Link
论文链接:
https://www.researchgate.net/publication/350372196_Dual_attentive_graph_neural_network_for_metro_passenger_flow_prediction
06
作者:
Li Y, Wang D, Moura J M F.
文章名称:
GSA-Forecaster: Forecasting Graph-Based Time-Dependent Data with Graph Sequence Attention[J].
编号及日期:
arXiv preprint arXiv:2104.05914, 2021.
论文链接:
https://arxiv.org/abs/2104.05914
07
作者:
Ye J, Zheng F, Zhao J, et al.
文章名称:
Incorporating Reachability Knowledge into a Multi-Spatial Graph Convolution Based Seq2Seq Model for Traffic Forecasting[J].
编号及日期:
arXiv preprint arXiv:2107.01528, 2021.
论文链接:
https://arxiv.org/abs/2107.01528
08
作者:
Li M, Chen S, Shen Y, et al.
文章名称:
Online Multi-Agent Forecasting with Interpretable Collaborative Graph Neural Network[J].
编号及日期:
arXiv preprint arXiv:2107.00894, 2021.
论文链接:
https://arxiv.org/abs/2107.00894
09
作者:
Wang Y, Yin H, Chen T, et al.
文章名称:
Passenger Mobility Prediction via Representation Learning for Dynamic Directed and Weighted Graph[J].
编号及日期:
arXiv preprint arXiv:2101.00752, 2021.
论文链接:
https://arxiv.org/abs/2101.00752
10
作者:
Jin G, Yan H, Li F, et al.
文章名称:
Spatial-Temporal Dual Graph Neural Networks for Travel Time Estimation[J].
编号及日期:
arXiv preprint arXiv:2105.13591, 2021.
论文链接:
https://arxiv.org/abs/2105.13591
11
作者:
Xu X, Zhang T, Xu C, et al.
文章名称:
Spatial-Temporal Tensor Graph Convolutional Network for Traffic Prediction[J].
编号及日期:
arXiv preprint arXiv:2103.06126, 2021.
论文链接:
https://arxiv.org/abs/2103.06126
因为数量比较多,2021年的更新整理了一下,2021年之前的学姐把传送门按上大家自取即可!
传送门:
https://github.com/Jhy1993/Awesome-GNN-Recommendation
参考文档:
https://github.com/Jhy1993/Awesome-GNN-Recommendation