TCGA|根据somatic mutation绘制突变景观图(oncoplot)和基因词云
使用 XENA下载的TCGA-LAML.mutect2_snv.tsv文件绘制基因词云和突变景观图。
有小伙伴在https://mp.weixin.qq.com/s/DvX_pKPF9bCcNqc3u6rTuw这个帖子下面留言说使用 maftools 的 genecloud函数绘制基因云图时,报错提示没有这个函数,然后还提到 http://bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html 官方文档中也没有genecloud,,也许是我的版本比较早所以还有吧,,,
虽然genecloud无法绘制,但是可以使用wordcloud2绘制,同样很简单
1.1 加载R包和数据
将XENA下载后的数据TCGA-LAML.mutect2_snv.tsv.gz解压,然后直接读入
#一键清空
rm(list = ls())
#载入R包
library(tidyverse)
#读入数据
mut <- read.table("TCGA-LAML.mutect2_snv.tsv",sep = "\t" , header = T,
stringsAsFactors = FALSE ,
check.names = FALSE)
head(mut,2)
1.2 计算基因频次,绘制词云
#计算每个基因出现的个数
mut2 <- mut %>% filter(effect %in% c("missense_variant","inframe_insertion")) %>%
select(Sample_ID,gene) %>%
group_by(gene) %>%
summarise(Freq = n()) %>%
arrange(desc(Freq))
head(mut2)
####绘制基因词云#####
library(wordcloud2)
#绘制频次大于等于5的
da <- subset(mut2,Freq >= 5) #、
wordcloud2(da)
1.3 maf文件绘制词云图
如果使用maftools中的maf文件绘制呢?首先根据maftools|TCGA肿瘤突变数据的汇总,分析和可视化得到了laml数据,那么可以用以下方式获得基因云图
library(wordcloud2)
data2 <- as.data.frame(table(laml@data$Hugo_Symbol))
da2 <- subset(data2,Freq >= 3) #3就是minMut参数的值
wordcloud2(da2)
2.1 提取基因
提取 1.2中突变频次较高的基因,进行绘制
mut3 <- mut %>% filter(gene %in% da$gene) %>%
select(Sample_ID,gene,effect) %>%
#只选择"missense_variant","inframe_insertion"两种类型
filter(effect %in% c("missense_variant","inframe_insertion")) %>%
unique()
#转成绘制热图的数据形式(宽型数据)
library(reshape2)
mut3_dcast <- mut3 %>% dcast(Sample_ID ~ gene,value.var='effect') %>%
dplyr::select(Sample_ID, da$gene) %>%
column_to_rownames("Sample_ID") %>%
t()
2.2 ComplexHeatmap绘制突变景观图
library(ComplexHeatmap)
library(circlize)
mat <- mut3_dcast
mat[is.na(mat)]<-""
mat[1:6,1:6]
oncoPrint(mat)
2.3 景观图调整
#指定颜色, 调整颜色代码即可
col <- c( "missense_variant" = "blue" , "inframe_insertion" = "green")
#指定变异的样子,x,y,w,h代表变异的位置(x,y)和宽度(w),高度(h)
alter_fun <- list(
background = function(x, y, w, h) {
grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"),
gp = gpar(fill = "#CCCCCC", col = NA))
},
missense_variant = function(x, y, w, h) {
grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"),
gp = gpar(fill = col["missense_variant"], col = NA))
},
inframe_insertion = function(x, y, w, h) {
grid.rect(x, y, w-unit(0.5, "mm"), h*0.33,
gp = gpar(fill = col["inframe_insertion"], col = NA))
}
)
#指定变异类型的标签,和数据中的类型对应
heatmap_legend_param <- list(title = "Alternations",
at = c("missense_variant","inframe_insertion"),
labels = c( "missense_variant","inframe_insertion"))
#设定标题
column_title <- "This is Oncoplot "
oncoPrint(mat,
alter_fun = alter_fun, col = col,
column_title = column_title,
remove_empty_columns = TRUE, #去掉空列
remove_empty_rows = TRUE, #去掉空行
row_names_side = "left", #基因在左
pct_side = "right",
heatmap_legend_param = heatmap_legend_param)
更多参数参考ComplexHeatmap|根据excel表绘制突变景观图(oncoplot)。
【觉得不错,右下角点个“在看”,期待您的转发,谢谢!】