跨频率耦合(Cross-frequency coupling, CFC)已被提出在空间和时间尺度上协调神经动力学。尽管它对理解健康和病理的大脑功能有潜在的意义,但标准的CFC分析和生理学解释仍然存在根本性的问题。例如,由于常见的非平稳性(nonstationarities),在神经频率成分之间完全缺乏相互作用的情况下,频谱相关性会也导致明显的CFC出现。为了提高对CFC的机械论的理解,我们根据其生物物理可解释性对现有的和潜在的新的统计建模方法进行了组织,并提供了一个路线图。虽然我们不会为所描述的所有问题提供解决方案,但我们提供了一份实用的建议列表,以避免常见的错误,并提高CFC分析的可解释性。本文发表在Current Opinion in Neurobiology杂志。CFC:有多么重要呢?神经科学的核心问题之一是神经活动如何在不同的空间和时间尺度上协调。这个问题的一个优雅的解决方案可能是,局部神经群的活动是根据全局神经元动力学来调节的。因为较大的神经群在较低的频率振荡和同步,而较小的群神经在较高的频率活跃。CFC可促进神经活动在时间和空间上的灵活协调。与这一观点一致,许多研究报告了这种跨频率的关系。特别是相位振幅CFC,低频成分的相位调节高频活动的振幅,这已被认为在神经信息处理和认知(如学习和记忆)中发挥重要的功能性作用。此外,CFC模式的变化与某些神经和精神疾病,如帕金森病、精神分裂症和社交焦虑障碍有关。因此,CFC对正常的脑功能是至关重要的,了解CFC模式对诊断和最终治疗各种疾病也是至关重要的。CFC的经典分析似乎非常简单(图1),并被广泛使用。然而,该分析方法检测到的CFC的所有特征,并不像通常报道的那样,是由于不同频率下发生的不同生理过程之间的相互作用。先前的研究表明,突变信号会导致虚假的CFC结果。这个问题的根源要普遍得多。让我们以范德堡尔(Van der Pol)振子为例,它是一个非常简单的非线性松弛振子。对这个振荡器进行CFC分析将表明低频成分的相位调制了较高频率的活动。然而,尽管有很强的CFC信号,对于振荡器的不同频率成分却不存在简单的物理解释,对于它们的相互作用就更少了。事实上,任何关于调制或频率因果相互作用的解释都是误导,因为频谱相关性与单个振荡器的非线性特性有关。