保姆级计算机视觉学习路线

因工作需要,年初花了4个月左右时间学习了机器学习、神经网络相关的知识,工作日每天大概学习4-6个小时,周末每天大概10个小时,工作中的需求应对也得心应手了。

想快速入门的话,从自己的经验看,可以先不看高等数学和线性代数,因为机器学习和深度学习中涉及的相关知识并不多。

视觉的知识部分建议分成两部分学习,第一部分传统图像处理,第二部分基于深度学习的图像处理。

但我发现,几乎80%的CVer 都没有从头至尾深入的学习图像处理方面的知识。

现在有了深度学习,不需要人为提取特征了,所以很多人不再关注图像底层的信息,而是直接越过这个根基去搭建模型,我觉得这是一个误区。

计算机视觉的提升不在于搭建模型,而在于不断调优、改进过程中积累的经验。

我们该怎么针对不同领域的图像设置不同的参数?其中包括卷积核大小、网络架构、初始权重等等,不可能拿到一个模型,既适合医学图像,又适合人脸识别,这其中就需要n次从70%的精度调到95%以上中积累出经验。

如果你决心要在这个领域深耕,那么图像底层方面的知识坚决不可跨越的,欲速则不达。

分享一套当时我学习过的教程,有视频、代码、PPT等,帮助大家打好基础。

跟着这个路线重新去梳理一下你的学习路线,相信计算机视觉水平一定会有质的提升。

资源已经整理好了,文末附下载方式!以下是详细内容介绍~ 

 第一章:机器学习与计算机视觉

计算机视觉简介

技术背景

  • 了解人工智能方向、热点

计算机视觉简介

  • cv简介

  • cv技能树构建

  • 应用领域

机器学习的数学基础

  • 线性与非线性变换

  • 概率学基础

  • kl散度

  • 梯度下降法

计算机视觉与机器学习基础

图像和视频

  • 图像的取样与量化

  • 滤波

  • 直方图

  • 上采样

  • 下采样

  • 卷积

  • 直方图均衡化算法

  • 最近邻差值

  • 单/双线性差值

特征选择与特征提取

  • 特征选择方法

  • filter等

  • 特征提取方法:PCA、LDA、SVD等

边缘提取

  • Canny

  • Roberts

  • Sobel

  • Prewitt

  • Hessian特征

  • Haar特征

相机模型

  • 小孔成像模型

  • 相机模型

  • 镜头畸变

  • 透视变换

计算机视觉与机器学习进阶

聚类算法

  • kmeans

  • 层次聚类

  • 密度聚类

  • 谱聚类

坐标变换与视觉测量

  • 左右手坐标系及转换

  • 万向锁

  • 旋转矩阵

  • 四元数

三维计算机视觉

  • 立体视觉

  • 多视几何

  • SIFT算法

三维计算机视觉与点云模型

  • PCL点云模型

  • spin image

  • 三维重构

  • SFM算法

图像滤波器

  • 直通滤波

  • 体素滤波

  • 双边滤波器

  • 条件滤波

  • 半径滤波

  • 图像增加噪声与降噪

OpenCV详解

OpenCV算法解析

  • 线性拟合

  • 最小二乘法

  • RANSAC算法

  • 哈希算法

  • DCT算法

  • 汉明距离

  • 图像相似度

第二章:深度学习与计算机视觉

神经网络

深度学习与神经网络

  • 深度学习简介

  • 基本的深度学习架构

  • 神经元

  • 激活函数详解(sigmoid、tanh、relu等)

  • 感性认识隐藏层

  • 如何定义网络层

  • 损失函数

推理和训练

  • 神经网络的推理和训练

  • bp算法详解

  • 归一化

  • Batch Normalization详解

  • 解决过拟合

  • dropout

  • softmax

  • 手推神经网络的训练过程

从零开始训练神经网络

  • 使用python从零开始实现神经网络训练

  • 构建神经网络的经验总结

深度学习开源框架

  • pytorch

  • tensorflow

  • caffe

  • mxnet

  • keras

  • 优化器详解(GD,SGD,RMSprop等

该视频出品人是王小天,目前就职于BAT之一,AI算法高级技术专家,法国TOP3高校双硕(计算机科学和数学应用双硕士)毕业。
(0)

相关推荐