TF之LSTM:基于Tensorflow框架采用PTB数据集建立LSTM网络的自然语言建模
TF之LSTM:基于Tensorflow框架采用PTB数据集建立LSTM网络的自然语言建模
关于PTB数据集
PTB (Penn Treebank Dataset)文本数据集是语言模型学习中目前最被广泛使用数据集。
ptb.test.txt #测试集数据文件
ptb.train.txt #训练集数据文件
ptb.valid.txt #验证集数据文件
这三个数据文件中的数据已经经过了预处理,包含了10000 个不同的词语和语句结束标记符(在文本中就是换行符)以及标记稀有词语的特殊符号。
为了让使用PTB数据集更加方便,TensorFlow提供了两个函数来帮助实现数据的预处理。首先,TensorFlow提供了ptb_raw_data函数来读取PTB的原始数据,并将原始数据中的单词转化为单词ID。
训练数据中总共包含了929589 个单词,而这些单词被组成了一个非常长的序列。这个序列通过特殊的标识符给出了每句话结束的位置。在这个数据集中,句子结束的标识符ID为2。
数据集的下载地址:TF的PTB数据集 (别的数据集不匹配的话会出现错误)
代码实现
本代码使用2层 LSTM 网络,且每层有 200 个隐藏单元。在训练中截断的输入序列长度为 32,且使用 Dropout 和梯度截断等方法控制模型的过拟合与梯度爆炸等问题。当简单地训练 3 个 Epoch 后,测试复杂度(Perplexity)降低到了 210,如果多轮训练会更低。
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import sys
import tensorflow as tf
Py3 = sys.version_info[0] == 3
def _read_words(filename):
with tf.gfile.GFile(filename, "r") as f:
if Py3:
return f.read().replace("\n", "<eos>").split()
else:
return f.read().decode("utf-8").replace("\n", "<eos>").split()
def _build_vocab(filename):
data = _read_words(filename)
counter = collections.Counter(data)
count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*count_pairs))
word_to_id = dict(zip(words, range(len(words))))
return word_to_id
def _file_to_word_ids(filename, word_to_id):
data = _read_words(filename)
return [word_to_id[word] for word in data if word in word_to_id]
def ptb_raw_data(data_path=None):
"""Load PTB raw data from data directory "data_path".
Reads PTB text files, converts strings to integer ids,
and performs mini-batching of the inputs.
The PTB dataset comes from Tomas Mikolov's webpage:
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
Args:
data_path: string path to the directory where simple-examples.tgz has
been extracted.
Returns:
tuple (train_data, valid_data, test_data, vocabulary)
where each of the data objects can be passed to PTBIterator.
"""
train_path = os.path.join(data_path, "ptb.train.txt")
valid_path = os.path.join(data_path, "ptb.valid.txt")
test_path = os.path.join(data_path, "ptb.test.txt")
word_to_id = _build_vocab(train_path)
train_data = _file_to_word_ids(train_path, word_to_id)
valid_data = _file_to_word_ids(valid_path, word_to_id)
test_data = _file_to_word_ids(test_path, word_to_id)
vocabulary = len(word_to_id)
return train_data, valid_data, test_data, vocabulary
def ptb_producer(raw_data, batch_size, num_steps, name=None):
"""Iterate on the raw PTB data.
This chunks up raw_data into batches of examples and returns Tensors that
are drawn from these batches.
Args:
raw_data: one of the raw data outputs from ptb_raw_data.
batch_size: int, the batch size.
num_steps: int, the number of unrolls.
name: the name of this operation (optional).
Returns:
A pair of Tensors, each shaped [batch_size, num_steps]. The second element
of the tuple is the same data time-shifted to the right by one.
Raises:
tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
"""
with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)
data_len = tf.size(raw_data)
batch_len = data_len // batch_size
data = tf.reshape(raw_data[0 : batch_size * batch_len],
[batch_size, batch_len])
epoch_size = (batch_len - 1) // num_steps
assertion = tf.assert_positive(
epoch_size,
message="epoch_size == 0, decrease batch_size or num_steps")
with tf.control_dependencies([assertion]):
epoch_size = tf.identity(epoch_size, name="epoch_size")
i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
x = tf.strided_slice(data, [0, i * num_steps],
[batch_size, (i + 1) * num_steps])
x.set_shape([batch_size, num_steps])
y = tf.strided_slice(data, [0, i * num_steps + 1],
[batch_size, (i + 1) * num_steps + 1])
y.set_shape([batch_size, num_steps])
return x, y
from reader import *
import tensorflow as tf
import numpy as np
data_path = 'F:/File_Python/Python_daydayup/data/simple-examples/data' #F:/File_Python/Python_daydayup/data/simple-examples/data
# 隐藏层单元数与LSTM层级数
hidden_size = 200
num_layers = 2
#词典规模
vocab_size = 10000
learning_rate = 1.0
train_batch_size = 16
# 训练数据截断长度
train_num_step = 32
# 在测试时不需要使用截断,测试数据为一个超长序列
eval_batch_size = 1
eval_num_step = 1
num_epoch = 3
#结点不被Dropout的概率
keep_prob = 0.5
# 用于控制梯度爆炸的参数
max_grad_norm = 5
# 通过ptbmodel 的类描述模型
class PTBModel(object):
def __init__(self, is_training, batch_size, num_steps):
# 记录使用的Batch大小和截断长度
self.batch_size = batch_size
self.num_steps = num_steps
# 定义输入层,维度为批量大小×截断长度
self.input_data = tf.placeholder(tf.int32, [batch_size, num_steps])
# 定义预期输出
self.targets = tf.placeholder(tf.int32, [batch_size, num_steps])
# 定义使用LSTM结构为循环体,带Dropout的深度RNN
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(hidden_size)
if is_training:
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_cell, output_keep_prob=keep_prob)
cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * num_layers)
# 初始化状态为0
self.initial_state = cell.zero_state(batch_size, tf.float32)
# 将单词ID转换为单词向量,embedding的维度为vocab_size*hidden_size
embedding = tf.get_variable('embedding', [vocab_size, hidden_size])
# 将一个批量内的单词ID转化为词向量,转化后的输入维度为批量大小×截断长度×隐藏单元数
inputs = tf.nn.embedding_lookup(embedding, self.input_data)
# 只在训练时使用Dropout
if is_training: inputs = tf.nn.dropout(inputs, keep_prob)
# 定义输出列表,这里先将不同时刻LSTM的输出收集起来,再通过全连接层得到最终输出
outputs = []
# state 储存不同批量中LSTM的状态,初始为0
state = self.initial_state
with tf.variable_scope('RNN'):
for time_step in range(num_steps):
if time_step > 0: tf.get_variable_scope().reuse_variables()
# 从输入数据获取当前时间步的输入与前一时间步的状态,并传入LSTM结构
cell_output, state = cell(inputs[:, time_step, :], state)
# 将当前输出加入输出队列
outputs.append(cell_output)
# 将输出队列展开成[batch,hidden*num_step]的形状,再reshape为[batch*num_step, hidden]
output = tf.reshape(tf.concat(outputs, 1), [-1, hidden_size])
# 将LSTM的输出传入全连接层以生成最后的预测结果。最后结果在每时刻上都是长度为vocab_size的张量
# 且经过softmax层后表示下一个位置不同词的概率
weight = tf.get_variable('weight', [hidden_size, vocab_size])
bias = tf.get_variable('bias', [vocab_size])
logits = tf.matmul(output, weight) + bias
# 定义交叉熵损失函数,一个序列的交叉熵之和
loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
[logits], # 预测的结果
[tf.reshape(self.targets, [-1])], # 期望正确的结果,这里将[batch_size, num_steps]压缩为一维张量
[tf.ones([batch_size * num_steps], dtype=tf.float32)]) # 损失的权重,所有为1表明不同批量和时刻的重要程度一样
# 计算每个批量的平均损失
self.cost = tf.reduce_sum(loss) / batch_size
self.final_state = state
# 只在训练模型时定义反向传播操作
if not is_training: return
trainable_variable = tf.trainable_variables()
# 控制梯度爆炸问题
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, trainable_variable), max_grad_norm)
# 如果需要使用Adam作为优化器,可以改为tf.train.AdamOptimizer(learning_rate),学习率需要降低至0.001左右
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
# 定义训练步骤
self.train_op = optimizer.apply_gradients(zip(grads, trainable_variable))
def run_epoch(session, model, data, train_op, output_log, epoch_size):
total_costs = 0.0
iters = 0
state = session.run(model.initial_state)
# # 使用当前数据训练或测试模型
for step in range(epoch_size):
x, y = session.run(data)
# 在当前批量上运行train_op并计算损失值,交叉熵计算的是下一个单词为给定单词的概率
cost, state, _ = session.run([model.cost, model.final_state, train_op],
{model.input_data: x, model.targets: y, model.initial_state: state})
# 将不同时刻和批量的概率就可得到困惑度的对数形式,将这个和做指数运算就可得到困惑度
total_costs += cost
iters += model.num_steps
# 只在训练时输出日志
if output_log and step % 100 == 0:
print("After %d steps, perplexity is %.3f" % (step, np.exp(total_costs / iters)))
return np.exp(total_costs / iters)
def main():
train_data, valid_data, test_data, _ = ptb_raw_data(data_path)
# 计算一个epoch需要训练的次数
train_data_len = len(train_data)
train_batch_len = train_data_len // train_batch_size
train_epoch_size = (train_batch_len - 1) // train_num_step
valid_data_len = len(valid_data)
valid_batch_len = valid_data_len // eval_batch_size
valid_epoch_size = (valid_batch_len - 1) // eval_num_step
test_data_len = len(test_data)
test_batch_len = test_data_len // eval_batch_size
test_epoch_size = (test_batch_len - 1) // eval_num_step
initializer = tf.random_uniform_initializer(-0.05, 0.05)
with tf.variable_scope("language_model", reuse=None, initializer=initializer):
train_model = PTBModel(True, train_batch_size, train_num_step)
with tf.variable_scope("language_model", reuse=True, initializer=initializer):
eval_model = PTBModel(False, eval_batch_size, eval_num_step)
# 训练模型。
with tf.Session() as session:
tf.global_variables_initializer().run()
train_queue = ptb_producer(train_data, train_model.batch_size, train_model.num_steps)
eval_queue = ptb_producer(valid_data, eval_model.batch_size, eval_model.num_steps)
test_queue = ptb_producer(test_data, eval_model.batch_size, eval_model.num_steps)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=session, coord=coord)
for i in range(num_epoch):
print("In iteration: %d" % (i + 1))
run_epoch(session, train_model, train_queue, train_model.train_op, True, train_epoch_size)
valid_perplexity = run_epoch(session, eval_model, eval_queue, tf.no_op(), False, valid_epoch_size)
print("Epoch: %d Validation Perplexity: %.3f" % (i + 1, valid_perplexity))
test_perplexity = run_epoch(session, eval_model, test_queue, tf.no_op(), False, test_epoch_size)
print("Test Perplexity: %.3f" % test_perplexity)
coord.request_stop()
coord.join(threads)
if __name__ == "__main__":
main()
赞 (0)