定角三角形研究四

专题四(1):定边对定角三角形

(后面简称“边对角三角形”)

旅途中,写多少算多少


在一个三角形中如果确定一个角和这个角的对边,可以看做是一条线段的张角确定,所以我们可以从两个角度去思考这个相对确定的三角形!


1.正弦定理:a/sinA=2r(r是三角形的外接圆半径),可以得到定边对定角会得到其外接圆确定;

2.轨迹角度思考:由圆周角圆外角圆内角的大小关系,对定线段的张角相等的所有点在一条确定的弧(有时没有确定方向,是两段对称的弧)上。


上面两种角度其实是统一的,都会得出:有定边对定角的情况出现,且定角顶点是动点,则这个三角形的外接圆是确定的,我们用外接圆来辅助解题是一个好方案!

问题一:边对角三角形中,研究两条边的取值范围

显然:两条邻边地位等价,我们只研究其中一条的取值范围即可!

显然:每条邻边都可以接近0,所以下限显然

解析:张角是钝角时,邻边上限无限接近对边;直角时,邻边上限无限接近对边(直径);锐角时,邻边上限为外接圆直径

显然:0<AD<6;0<BD6;0<CD6/sinC。

备注:若无三角形的约束,那么上下限都可以取等!上面的结论可以借助辅助圆中的弦的性质:圆中直径是最长的弦;也可以直接用斜垂关系+三角函数的不等量关系确定(参考“研究一”)

问题二:边对角三角形中,研究两条边之和(与周长等价)的取值范围

       解析:研究线段和的问题,比较常用的思路是“二合一”,“折化直”,如下图:延长IH到M使得HM=HI!(思路很多,这里只选其一,后面有机会介绍更多的方法)

        上述两类问题的命题非常广泛,正向、逆向的命题都有很多漂亮的题目!我们后续做一些相关题目,有经典题目,也有新编题目,也有过度性的研究型题目。

好的,今天的专题就到这里,我们下期见,今天的“边对角问题”类型比较多,我们后面几期还会对这类问题做更深入的分类研究!欢迎分享我们的公众号给需要的人!

(0)

相关推荐

  • 人教版 | 初二春 · 平行四边形、矩形、菱形综合应用

    李仙儿课堂开课啦 跟着李仙儿 数学飞天 李仙儿寄语: 一大波知识点来袭 以为你布下天罗地网 快来试试吧 敲重点啦! 特殊四边形的性质及判定定理很多 容易混淆 深刻理解这些性质与判定 理清他们之间的联系 ...

  • 相似三角形边比例关系

    相似三角形中三边对应成比例.设一个三角形的三边为A.B.C:另一个三角形的三边为M.N.X:相似三角形的对应的三个角度数相等,那么A:M=B:N=C:X. 1判定定理 (1)平行于三角形一边的直线和其 ...

  • “圆” 相关知识点整理,收藏

    以微课堂 奥数国家级教练与四名特级教师联手打造,初中数学精品微课堂.271篇原创内容公众号 [圆]相关笔记整理一:圆的相关概念 圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点 ...

  • 定角三角形研究六

    定角系列文章链接: 定角三角形研究一 定角三角形研究二 定角三角形研究三 定角三角形研究四 定角三角形研究五 这几天忙<解析系列>的最后校稿工作,没顾得上写"定角系列" ...

  • 定角三角形研究五

    专题四(2):定边对定角三角形 (后面简称"边对角三角形") 旅途中,写多少算多少 问题三:边对角三角形中的定边上的高(与三角形面积等价)最值 我们继续用问题一的图,分三种情况对这 ...

  • 定角三角形研究二

    专题二:旋转+定角定高 本来想按部就班的慢慢往下写定角的各种情况的,这两天做了不少比较复杂的一类题目,就先把这几个题分享给大家! 问题特征: 1.这类问题求三角形面积最值 2.这类问题有一个定角,且定 ...

  • 定角三角形研究三

    三角形是我们最常研究的几何图形,从本文起我们将陆续对三角形中一个角元素确定时的各种情况做一些研究! 专题一:定形三角形中的定角 在旅途中,直接发三个网红题的解 好的,今天的专题就到这里,我们下期见!欢 ...

  • 定角三角形研究一

            三角形是我们最常研究的几何图形,从本文起我们将陆续对三角形中一个角元素确定时的各种情况做一些研究! 专题一:定角         问题1:在△ABC中,只有∠A确定,可以研究那些问题? ...

  • 【中考数学】定角三角形的最值探究

    中小学微学堂 奥数国家级教练与四位特级教师 联手执教. 定角三角形的最值探究 ---孙洋清 考试中,我们经常会遇到这样一类题型,即某三角形具有一定角,还隐藏有其他的一组定值,让我们来探究三角形某边长或 ...

  • 定角定高三角形

    相关模型总结:

  • 【中考2021】三角形中定边对定角,求另外两边加权后和最值问题

    Perseverance Prevails  怎样解题 How to solve it <怎样解题>一书的作者匈牙利数学家波利亚说过,掌握数学就意味着要善于解题.做题不在多而在精,题要解得 ...

  • 2021师大四模压轴题解析旋转转化 定角...

    2021师大四模压轴题解析 旋转转化+定角定高周长最小问题