喝咖啡和茶会影响炎症性肠病患者的骨代谢吗?
Nutrients 2021, 13, 216.
https://doi.org/10.3390/nu13010216
发布:2021年1月13日
摘要
由于骨矿物质密度较低,患有克罗恩氏病和溃疡性结肠炎的患者发生骨质疏松症的风险较高。骨质疏松症的危险因素分为年龄、性别、遗传因素等不可改变的因素,包括饮食、身体活动水平和使用兴奋剂等可改变的因素。咖啡和茶含有许多影响骨骼代谢的化合物。某些物质(例如抗氧化剂)可以保护骨骼;其他物质可能会增加骨吸收。然而,咖啡和茶对炎性肠病的发展和病程的影响是矛盾的。
关键词: 克罗恩病; 结肠炎; 溃疡; 咖啡因; 茶花
1.简介
摄入含咖啡因的产品可能会影响骨骼代谢[ 1 ],而过量饮用咖啡和茶则构成骨质疏松的可改变危险因素。因此,改变有害习惯可以降低骨质疏松症的风险[ 2,3,4 ]。
在最近几十年中,炎症性肠病(IBD)-克罗恩病(CD)和溃疡性结肠炎(UC)的发病率有所增加。IBD发病率最高的地区是北美,那里有20.2 / 100的居民患有CD,19.2 / 100,000的居民患有UC,而IBD的发病率在欧洲约有200万人,在美国约有150万人。必须注意的是,UC和CD通常在高度发达国家中被诊断出来。IBD的主要症状是胃肠道疾病,尽管该疾病可能影响其它系统,以及[ 5,6]。在西方国家,女性罹患IBD(尤其是克罗恩病)的比例高于男性。IBD的病因尚不完全清楚。尽管有几个与CD或UC相关的位点可以确认该疾病的遗传基础,但环境因素可能还参与了该疾病的发展[ 7 ]。CD通常始于回肠的末端,但可能会影响胃肠道的任何部分,并且炎症成分是不连续的。另一方面,UC影响结肠从远端向近端的发展,并且炎症是连续的[ 8 ]。
即使根据临床数据,饮用咖啡和茶与IBD之间的关联仍不清楚。上述饮料的化合物(例如咖啡因)可能对IBD患者产生积极和消极的影响。另外,咖啡在食用后4分钟内会增加肠道的运动活性,两种饮料对结肠的影响与食用1000大卡餐相似[ 1 ]。请记住,肠道的较高运动活动可能会加剧IBD中的腹泻,Rao等人。报告指出,含咖啡因的咖啡与大餐消耗类似,可增加结肠的运动能力,分别比水和不含咖啡因的咖啡增加60%和23%[ 2 ]。
此外,咖啡因可能抑制食欲,从而增加患有IBD的患者营养不良的风险。至关重要的是,咖啡可能会降低食管下括约肌的张力,从而加剧胃食管反流病。另外,咖啡可能会对上消化道发炎的CD患者有害[ 1 ],因为它可能会增加失眠和增加压力激素水平。
骨质疏松症是一种慢性骨病,其骨矿物质密度(BMD)低,可能导致脆性骨折,残疾并降低生活质量。年龄超过50岁的男女中,有1/3和1/5患有骨质疏松性骨折 [ 9,10,11 ]。人口老龄化导致骨质疏松症的人数增加-据估计,现在有2亿人报告患有这种疾病[ 12 ]。骨质疏松症的患病率在世界上各地有所不同[ 13]。骨质疏松症的危险因素包括女性性别、年龄、BMI(身体质量指数)、身体活动低、饮食不足(钙和维生素D摄入量不足)、过去发生骨折、肌肉质量低、遗传因素、直系亲属骨质疏松症的诊断、某些药物(如类固醇)的服用以及某些疾病的发生,包括IBD[1]。绝经后妇女患骨质疏松症的风险较高,许多有关骨质疏松症的研究都涉及这一群体[3,12,14,15]。
此外,峰值骨质与其他遗传因素以及营养、种族、生活区域和环境因素无关。另外, IBD患者的危险因素包括肠骨免疫信号和致病微生物群[ 16,17 ]。
IBD患者发生低BMD和骨折的风险增加[ 18 ]。事实上,骨质疏松症或骨质疏松症影响约18–42%的成年人和20–50%的儿童患有IBD。根据Krela-Kaźmierczak等人的波兰研究,股骨颈部和腰椎骨质疏松症发生在45.3%的女性和24.5%的男性中。
2.咖啡因和茶—骨代谢、钙和磷酸盐的管理
饮用咖啡对骨骼代谢的影响仍然存在争议。咖啡中含有的因咖啡可能通过许多机制来影响BMD,因为它增加了尿钙排泄,抑制成骨细胞的增殖和骨愈合过程,导致骨折的风险升高 [ 19,20,21 ]。
咖啡因的细胞毒性可以通过诱导细胞凋亡引起[ 22 ],因为咖啡因刺激活性氧香料的形成,从而诱导细胞凋亡级联反应。因此,半胱氨酸蛋白酶(Caspases)和BCL-2家族的成员被激活。由于调节外线粒体膜的渗透性,Caspases和BCL-2系列的成员调节线粒体膜渗透性的变化并释放细胞色素C。此外,咖啡因可能抑制成骨细胞的抗凋亡途径,该途径涉及ERK(细胞外信号调节激酶)和Akt(蛋白激酶B,PKB)[ 23 ]。
这项动物研究表明,咖啡因可减少Wistar大鼠中矿化结节和成骨细胞群落的形成。此外,成骨细胞产生的LDH(乳酸脱氢酶)和PGE2(前列腺素E2)的活性也降低了。实际上,这项研究表明咖啡因对骨骼细胞的代谢和活力具有负面影响[ 24]。咖啡中所含的咖啡因通过减少成骨细胞系中的间充质干细胞(MSC)的分化和抑制特定基因表达来影响成骨作用。MSC的分化受Cbfa1 / Runx2(与矮子相关的转录因子2(RUNX2),也称为核心结合因子亚基α-1)控制,其可能受cAMP(环状单磷酸腺苷)调控。因此,咖啡因可通过抑制cAMP磷酸二酯酶的活性来增加细胞内cAMP的含量,从而导致cAMP降解的减少[ 25 ]。假定咖啡因参与了Cbfa1 / Runx2基因表达的调节,并降低了成骨细胞中MSC的分化率。
咖啡因可增加尿中钙的排泄,并减少钙在肠道中的吸收[ 26 ]。另一方面,它也增加了镁、钠和氯化物的尿排泄,该过程在食用后至少持续3小时。尽管高钙血症作用取决于咖啡因剂量,但腺苷激动剂可能会抑制它[ 27 ]。反过来,这可能会导致BMD降低,尤其是在无法通过饮食补偿尿液中钙损失的患者,以及因肠粘膜改变而患IBD的患者,这进一步导致肠道吸收减少。
研究人员还研究了喝咖啡对磷酸钙平衡的影响,该平衡可能导致骨骼疾病,包括骨质疏松症[ 28 ]。咖啡的化合物,尤其是咖啡因,会损害钙的吸收并刺激钙的排泄[ 29 ]。实际上,摄入咖啡因后至少3小时,咖啡因会增加钙、镁、钠和氯化物的排泄[ 27 ]。摄入咖啡因导致尿钙流失可能是肾脏吸收减少的结果。此外,咖啡因的作用与游离脂肪量的剂量成正比[ 30]。正如Massey等人所报告,摄入咖啡因会降低血清肌醇水平,从而参与钙代谢,并可能略微增加钙的排泄并降低吸收[ 27 ]。此外,磷酸钙不平衡可能会减少BMD。然而,每天摄入推荐剂量的钙的人没有咖啡因影响骨钙代谢的风险[ 31 ]。另外,茶碱1,3-二甲基黄嘌呤也可增加动物的钙排泄[ 32 ]。表1列出了一些可能影响骨骼的咖啡化合物。
3.咖啡
3.1。咖啡消费
咖啡是世界上最受欢迎的非酒精饮料。关于咖啡对某些疾病发展风险的影响的大多数研究都是观察性的。实际上,数据解释可能会受到与咖啡消费相关的其他反健康行为的影响,例如吸烟和低体力活动[ 35 ]。咖啡包含一千多种化学化合物,包括碳水化合物、脂肪、氮化合物、维生素、矿物质以及生物碱,这些物质可能对健康有益[ 36 ]。实际上,咖啡因是咖啡中最主要和最知名的物质之一[ 35]。咖啡中咖啡因的含量可能会有所不同,并取决于饮料的制备方法,例如,浓缩咖啡中含有30–50 mg咖啡因,速溶咖啡-约60–85 mg,而滴加的咖啡则在85–120 mg之间[ 37 ]。然而,咖啡因也存在于茶叶、可可豆(巧克力)、巴拉圭茶叶、可乐果或瓜拉纳[ 38,39,40 ]。如今,能量丸和碳酸软饮料,其中还含有咖啡因,经常被年轻人和儿童所消费[ 41 ]。另外,咖啡因可以添加到诸如止痛药之类的药物中[ 42 ]。
3.2。咖啡消费和IBD风险
关于咖啡对IBD发展的影响的数据是矛盾的。根据Hansen等人的观点,与喝少量咖啡的受试者相比,喝三杯或更多杯咖啡不会改变患病的风险[ 43 ]。在亚洲和澳大利亚人群中,尽管没有改变CD的风险,但咖啡摄入量降低了UC的风险[ 44 ]。荟萃分析表明,饮用咖啡可以保护个人免受UC和CD,但影响不显著[ 45,46 ]。实际上,超过70%的IBD患者宣称定期喝咖啡,而有6.5%的患者选择不含咖啡因的品种[ 47 ]。
此外,几乎三分之二的避免喝咖啡的受试者在喝咖啡后报告全身不适和胃肠道症状恶化[ 47 ]。尽管根据Gacek等人的问卷调查,IBD男性患者与健康个体之间的咖啡摄入量没有差异[ 48 ],但有67%以上的IBD患者宣称避免食用过量的咖啡和茶[ 49 ]。
3.3。IBD患者的咖啡消耗量和骨质疏松症的风险
一项动物研究表明,中高剂量的咖啡因可降低卵巢切除术诱发的骨质疏松大鼠的血清碱性磷酸酶和酸性磷酸酶水平[ 50 ]。
Chau等人报道了咖啡的摄入量与腰椎和股骨颈的骨密度呈正相关。此外,与咖啡消费有关的代谢产物与骨矿物质密度相关[ 51 ]。每天摄入1000毫升以上的咖啡会使钙排泄增加1.6 mmol,而每天摄入1-2杯咖啡则对钙平衡有轻微的影响[ 52 ]。另一方面,咖啡摄入量较高和适中与T分数较高相关。研究人员观察到饮用量适中的人群的趋势,这可能表明T分数随咖啡消耗的增加而增加[ 53]。此外,女性摄入咖啡与骨折或股骨颈骨折的发生之间没有关联,尽管与摄入少于一杯咖啡的受试者相比,每天摄入四杯以上咖啡可使BMD降低2-4% [ 54 ]。此外,绝经后妇女的咖啡摄入量增加与BMD降低有关,而在其一生中每天喝一杯牛奶的妇女中BMD的变化并未发生[ 55 ]。研究表明,适量饮用咖啡可以保护绝经后妇女的骨质流失[ 56],喝咖啡量适中的男性(年龄:64.85±9.41岁)患骨质疏松症的风险要低于不喝这种饮料的受试者[ 57 ]。Al-Othman等人报道不同摄入咖啡量的人群血清25(OH)D水平没有差异[ 58 ]。因此,适量的咖啡摄入可能会降低IBD患者的骨质疏松风险。
4.茶
4.1。茶消费
茶是世界范围内用于制备饮料的植物。绿茶特别受欢迎,因为它含有多种抗氧化剂。在其叶子中,我们可以找到诸如儿茶素类物质,例如表没食子儿茶素3-没食子酸酯、表儿茶素、表儿茶素3-没食子酸酯、表没食子儿茶素、可可碱、茶碱、酚酸或咖啡因。事实上,黄酮类化合物可能占干物质的30%[ 59 ],由于其抗氧化特性,茶已被公认为可以预防疾病和某些肿瘤的产品[ 60]]。必须要注意,绿茶主要在亚洲和北非国家消费,红茶在美国、英国和其他西方国家最受欢迎。此外,乌龙茶主要在台湾、中国南部和大多数东方国家消费[ 61 ]。
4.2。茶消费与IBD风险
人人普遍认为茶叶消费可以保护UC和CD的发展[45,46,62 ]。在他们的研究中,Du等人指出,表没食子儿茶素3-没食子酸酯减少了肠道炎症中的细胞和分子炎症以及肠道通透性[ 63 ]。此外,炎症调节剂在喂养表皮胆3胆和受诱导炎症的小鼠的肠道减少。然而,蛋白质和脂肪的消化在研究组减少,这对IBD患者不利 [ 64]。绿茶中的多酚可通过调节IKK(IκB激酶复合物)、TNFγ(肿瘤坏死因子γ)、Cox-2(环氧合酶-2)、Bcl-2(B细胞淋巴瘤2)和NF- KB(核因子κB)的产生,可减少炎症[ 65,66 ]。
4.3。IBD患者的茶摄入量和骨质疏松风险
补充500 mg绿茶多酚(GTP)可以增加骨骼特异性碱性磷酸酶的含量,这是骨骼形成的标志。另外,补充没有改变血清钙水平和钙排泄[ 69 ]。实际上,一项荟萃分析表明,喝茶减少了骨质疏松的风险[ 70 ]。根据Zhang等人的研究,喝茶的受试者的髋部和股骨颈的骨密度高于非饮酒者。但是,茶的摄入量与总骨密度没有关系[ 60]。此外,一项中国研究表明,适量摄入茶对女性骨骼健康有积极影响。然而,较高的摄入量既不会降低BMD也不会增加BMD,并且在男性中,茶摄入量与BMD之间没有关联[ 71 ]。喝茶的人的骨密度较高,约为1.9%[ 72 ]。郭等人调查了茶叶消耗量是否增加了骨密度;然而,茶摄入与骨质疏松性骨折之间的关系需要更多的研究[ 73 ]。
5. IBD患者的咖啡和茶消费量和菌群
在各种研究的基础上,肠道功能障碍是IBD发病机理中最重要的因素之一[ 74 ],并且将微生物群的修饰与药物治疗进行了比较。根据Kruis等人的研究,就复发而言,使用大肠杆菌Nissle 1917菌株相当于美沙拉嗪治疗[ 75]。有趣的是,上述研究的研究主题集中在营养物和刺激物对菌群和IBD病程的影响上。此外,在他们的研究中,Ng等人观察了咖啡和茶对IBD发生风险的影响,其中多因素Logistic回归表明,饮用茶与CD风险降低有关。此外,在亚洲人口中,咖啡和茶的摄入与患UC的风险较低有关[ 44]。尽管关联的机制尚不清楚,但可能的因素之一可能是咖啡和茶对肠道菌群的影响。实际上,咖啡及其成分(咖啡因和绿原酸等)可能会影响微生物群的组成。如Nishitsuji等人观察到,咖啡和绿原酸的使用在患有糖尿病并因此导致菌群失调的肥胖小鼠中恢复了短链脂肪酸(SCFA)的平衡[ 76 ]。值得记住的是,SCFA在代谢过程的调节中起着至关重要的作用,并影响免疫系统和许多细胞的增殖[ 77 ]。具体来说,丁酸对结肠细胞至关重要[ 78]。此外,在研究中,Nishitsuji等人发现肠道菌群中六个微生物属的百分比发生了改变[ 76 ]。实际上,咖啡的饮用会通过增加乳链球菌和婴儿链球菌的数量来影响席尔瓦菌群[ 79 ]。但是,关于咖啡因对肠道菌群的负面影响的数据有限。根据Kleber Silveira等人的研究,尽管瓜拉那中的咖啡因对肠道菌群有负面影响,但据报道,瓜拉那可改善氧化还原参数[ 80 ]。
炎症性肠病的发病机制与上皮和粘膜下细胞的浸润有关。几丁质酶3样蛋白1(CHI3L1)是一种宿主蛋白,可促进细菌与上皮细胞的连接。Lee等人观察到,咖啡因(泛几丁质酶的抑制剂)阻断CHI3L1可能会降低结肠炎的风险。事实上,咖啡因治疗降低了CHI3L1 mRNA表达,这取决于咖啡因剂量,导致细菌侵入肠壁的程度有所降低。咖啡因的剂量触发了对右旋糖酐硫酸钠的反应较弱(刺激结肠炎),降低了体重,在小鼠中获得了更好的临床和组织学结果。此外,细菌向其他器官的易位和促炎细胞因子也较低。根据Lee等人的研究,咖啡因通过细菌相互作用的变化和CHI3L1表达的减少来抑制急性结肠炎[81]。
普洱茶是多酚和咖啡因的良好来源,并影响人体成分和各种细胞的能量利用效率。进食普洱茶可以减少高脂饮食小鼠的炎症指标。此外,普洱茶改变肠道细菌轮廓,如下普洱茶的消耗,在观察到增加Akkermansia muciniphila(A. muciniphila),增加脂肪氧化和葡萄糖代谢,以及在Faecalibacterium prausnitzii,减少炎症反应高脂饮食引起的肝脏和肠道疾病[ 82 ]。
人参茶通过增加定植的方法修饰大鼠实验性结肠炎中肠微生物乳杆菌和双歧杆菌,抑制大肠杆菌的生长。必须要注意,茶的儿茶素也影响慢性肠炎。小肠仅吸收少量儿茶素,很大一部分儿茶素被分解并吸收[ 83]。有趣的是,儿茶素可能会调节肠道菌群的组成,这在代谢物的产生及其生物学活性的调节中发挥作用。一项体外研究表明,红茶中的多酚可抑制病原体的生长,这些病原体对患有IBD且免疫系统受到抑制的患者有害。实际上,多酚可控制幽门螺杆菌、金黄色葡萄球菌、大肠杆菌O157:H7、鼠伤寒沙门氏菌DT104,铜绿假单胞菌的生长[ 84 ]。
嗜粘液菌是一种影响SCFA产生以及杯状细胞刺激粘液产生的细菌,可改善肠粘膜屏障的完整性。此外,粘杆菌减少厚壁菌和梭状芽孢杆菌的数量,促进肠道内稳态[85]。必须要注意的是,茶和其他产品中的多酚可能会增加粘杆菌的数量,从而直接减少肠道炎症。尽管如此,绿茶对结肠细胞影响的机制尚不清楚,尽管绿茶可能通过肠道菌群的调节来预防结肠癌,而结肠癌是IBD的常见结果。本研究在动物实验中得到证实,在两周内服用绿茶与逆转病理改变有关,包括厚壁菌与拟杆菌比率降低,以及产生SCFA的Lachinospiraceae and Ruminococcaceae数量减少,减少reduce Eubacterium and Roseburia [86,87]。此外,绿茶的摄入导致口腔中梭杆菌数量减少,这对患有IBD的患者是有益的[88]。此外,绿茶可以减少腹泻,抑制体重损失,减少结肠癌过氧化物酶和TNF-α的产生[89]。
6.总结
在他们的指南中,研究性炎症性肠病或骨质疏松症的研究小组参考了本文讨论的兴奋剂:
1. ECCO(欧洲克罗恩氏和结肠炎组织)指出,尚无关于咖啡或咖啡因对IBD风险影响的明确数据。然而,由于该产品加剧了该疾病的症状,因此一些患者,特别是患有克罗恩氏病的患者报告避免喝咖啡。
2. AACE / ACE(美国临床内分泌学家协会和美国内分泌学会)建议将绝经后妇女每天饮用含咖啡因的饮料限制为每天1-2份[ 90 ]。
炎症性肠病的患者应理性地饮用含咖啡因的饮料。但是,关于咖啡和茶对骨骼代谢的影响以及炎性肠病中骨质疏松的病程和发展,还需要进行更多的研究。
参考文献:
1. Lin, X.; Xiong, D.; Peng, Y.-Q.; Sheng, Z.-F.; Wu, X.-Y.; Wu, X.-P.; Wu, F.; Yuan, L.-Q.; Liao, E.-Y. Epidemiology and Management of Osteoporosis in the People’s Republic of China: Current Perspectives. Clin. Interv. Aging 2015, 10, 1017–1033. [Google Scholar] [CrossRef] [PubMed]
2. Kwiatkowska, I.; Lubawy, M.; Formanowicz, D. Nutritional Procedure in Osteoporosis Prevention in Older People. Geriatria 2019, 13, 177–183. [Google Scholar]
3. Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s Position Statement on Peak Bone Mass Development and Lifestyle Factors: A Systematic Review and Implementation Recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed]
4. Tabor, E.; Kuźniewicz, R.; Zagórski, P.; Martela, K.; Pluskiewicz, W. The Relationship of Knowledge of Osteoporosis and Bone Health in Postmenopausal Women in Silesia Osteo Active Study. J. Clin. Densitom. 2018, 21, 98–104. [Google Scholar] [CrossRef]
5. Sairenji, T.; Collins, K.L.; Evans, D.V. An Update on Inflammatory Bowel Disease. Prim. Care 2017, 44, 673–692. [Google Scholar] [CrossRef]
6. Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. Lancet 2018, 390, 2769–2778. [Google Scholar] [CrossRef]
7. Matsuoka, K.; Kobayashi, T.; Ueno, F.; Matsui, T.; Hirai, F.; Inoue, N.; Kato, J.; Kobayashi, K.; Kobayashi, K.; Koganei, K.; et al. Evidence-Based Clinical Practice Guidelines for Inflammatory Bowel Disease. J. Gastroenterol. 2018, 53, 305–353. [Google Scholar] [CrossRef]
8. Khasawneh, M.; Spence, A.D.; Addley, J.; Allen, P.B. The Role of Smoking and Alcohol Behaviour in the Management of Inflammatory Bowel Disease. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 553–559. [Google Scholar] [CrossRef]
9. Mędrela-Kuder, E.; Szymura, K. Selected Anti-Health Behaviours among Women with Osteoporosis. Rocz. Panstw. Zakl. Hig. 2018, 69, 397–403. [Google Scholar] [CrossRef]
10. Chan, C.Y.; Subramaniam, S.; Chin, K.-Y.; Ima-Nirwana, S.; Muhammad, N.; Fairus, A.; Mohd Rizal, A.M.; Ng, P.Y.; Nor Aini, J.; Aziz, N.A.; et al. Knowledge, Beliefs, Dietary, and Lifestyle Practices Related to Bone Health among Middle-Aged and Elderly Chinese in Klang Valley, Malaysia. Int. J. Environ. Res. Public Health 2019, 16, 1787. [Google Scholar] [CrossRef]
11. Yamamoto, L.A.; DiBonaventura, M.; Kawaguchi, I. The Association between Osteoporosis and Patient Outcomes in Japan. J. Med. Econ. 2016, 19, 702–709. [Google Scholar] [CrossRef] [PubMed]
12. Wang, Y.; Ding, H.; Wang, X.; Wei, Z.; Feng, S. Associated Factors for Osteoporosis and Fracture in Chinese Elderly. Med. Sci. Monit. 2019, 25, 5580–5588. [Google Scholar] [CrossRef] [PubMed]
13. Thorin, M.H.; Wihlborg, A.; Åkesson, K.; Gerdhem, P. Smoking, Smoking Cessation, and Fracture Risk in Elderly Women Followed for 10 Years. Osteoporos. Int. 2016, 27, 249–255. [Google Scholar] [CrossRef] [PubMed]
14. Landin-Wilhelmsen, K.; Wilhelmsen, L.; Bengtsson, B.-Å. Postmenopausal Osteoporosis Is More Related to Hormonal Aberrations than to Lifestyle Factors. Clin. Endocrinol. 1999, 51, 387–394. [Google Scholar] [CrossRef]
15. Bijelic, R.; Milicevic, S.; Balaban, J. Risk Factors for Osteoporosis in Postmenopausal Women. Med. Arch. 2017, 71, 25–28. [Google Scholar] [CrossRef]
16. Sgambato, D.; Gimigliano, F.; De Musis, C.; Moretti, A.; Toro, G.; Ferrante, E.; Miranda, A.; De Mauro, D.; Romano, L.; Iolascon, G.; et al. Bone Alterations in Inflammatory Bowel Diseases. World J. Clin. Cases 2019, 7, 1908–1925. [Google Scholar] [CrossRef]
17. Oh, H.J.; Ryu, K.H.; Park, B.J.; Yoon, B.-H. Osteoporosis and Osteoporotic Fractures in Gastrointestinal Disease. J. Bone Metab. 2018, 25, 213–217. [Google Scholar] [CrossRef]
18. Ali, T.; Lam, D.; Bronze, M.S.; Humphrey, M.B. Osteoporosis in Inflammatory Bowel Disease. Am. J. Med. 2009, 122, 599–604. [Google Scholar] [CrossRef]
19. Duarte, P.M.; Marques, M.R.; Bezerra, J.P.; Bastos, M.F. The Effects of Caffeine Administration on the Early Stage of Bone Healing and Bone Density A Histometric Study in Rats. Arch. Oral Biol. 2009, 54, 717–722. [Google Scholar] [CrossRef] [PubMed]
20. Ohta, M.; Ide, K.; Cheuk, G.; Cheuk, S.L.; Yazdani, M.; Nakamoto, T.; Thomas, K.A. A Caffeine Diet Can Alter the Mechanical Properties of the Bones of Young Ovariectomized Rats. Ann. Nutr. Metab. 2002, 46, 108–113. [Google Scholar] [CrossRef] [PubMed]
21. Hernandez-Avila, M.; Colditz, G.A.; Stampfer, M.J.; Rosner, B.; Speizer, F.E.; Willett, W.C. Caffeine, Moderate Alcohol Intake, and Risk of Fractures of the Hip and Forearm in Middle-Aged Women. Am. J. Clin. Nutr. 1991, 54, 157–163. [Google Scholar] [CrossRef]
22. Fernández, M.J.; López, A.; Santa-Maria, A. Apoptosis Induced by Different Doses of Caffeine on Chinese Hamster Ovary Cells. J. Appl. Toxicol. 2003, 23, 221–224. [Google Scholar] [CrossRef]
23. Lu, P.-Z.; Lai, C.-Y.; Chan, W.-H. Caffeine Induces Cell Death via Activation of Apoptotic Signal and Inactivation of Survival Signal in Human Osteoblasts. Int. J. Mol. Sci. 2008, 9, 698–718. [Google Scholar] [CrossRef]
24. Tsuang, Y.-H.; Sun, J.-S.; Chen, L.-T.; Sun, S.C.-K.; Chen, S.-C. Direct Effects of Caffeine on Osteoblastic Cells Metabolism: The Possible Causal Effect of Caffeine on the Formation of Osteoporosis. J. Orthop. Surg. 2006, 1, 7. [Google Scholar] [CrossRef]
25. Zhou, Y.; Guan, X.X.; Zhu, Z.L.; Guo, J.; Huang, Y.C.; Hou, W.W.; Yu, H.Y. Caffeine Inhibits the Viability and Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stromal Cells. Br. J. Pharmacol. 2010, 161, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
26. Heaney, R.P. Effects of Caffeine on Bone and the Calcium Economy. Food Chem. Toxicol. 2002, 40, 1263–1270. [Google Scholar] [CrossRef]
27. Massey, L.K.; Whiting, S.J. Caffeine, Urinary Calcium, Calcium Metabolism and Bone. J. Nutr. 1993, 123, 1611–1614. [Google Scholar] [CrossRef]
28. Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of Caffeine on Human Health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef]
29. Samoggia, A.; Riedel, B. Consumers’ Perceptions of Coffee Health Benefits and Motives for Coffee Consumption and Purchasing. Nutrients 2019, 11, 653. [Google Scholar] [CrossRef]
30. Massey, L.K.; Wise, K.J. Impact of Gender and Age on Urinary Water and Mineral Excretion Responses to Acute Caffeine Doses. Nutr. Res. 1992, 12, 605–612. [Google Scholar] [CrossRef]
31. Heaney, R.P.; Rafferty, K. Carbonated Beverages and Urinary Calcium Excretion. Am. J. Clin. Nutr. 2001, 74, 343–347. [Google Scholar] [CrossRef]
32. Whiting, S.J.; Whitney, H.L. Effect of Dietary Caffeine and Theophylline on Urinary Calcium Excretion in the Adult Rat. J. Nutr. 1987, 117, 1224–1228. [Google Scholar] [CrossRef]
33. Folwarczna, J.; Zych, M.; Nowińska, B.; Pytlik, M.; Janas, A. Unfavorable Effect of Trigonelline, an Alkaloid Present in Coffee and Fenugreek, on Bone Mechanical Properties in Estrogen-Deficient Rats. Mol. Nutr. Food Res. 2014, 58, 1457–1464. [Google Scholar] [CrossRef]
34. Kiyama, R. Estrogenic Activity of Coffee Constituents. Nutrients 2019, 11, 1401. [Google Scholar] [CrossRef]
35. Higdon, J.V.; Frei, B. Coffee and Health: A Review of Recent Human Research. Crit. Rev. Food Sci. Nutr. 2006, 46, 101–123. [Google Scholar] [CrossRef]
36. Lire Wachamo, H. Review on Health Benefit and Risk of Coffee Consumption. Med. Aromat. Plants 2017, 6, 1–12. [Google Scholar] [CrossRef]
37. Nieber, K. The Impact of Coffee on Health. Planta Med. 2017, 83, 1256–1263. [Google Scholar] [CrossRef]
38. Reyes, C.M.; Cornelis, M.C. Caffeine in the Diet: Country-Level Consumption and Guidelines. Nutrients 2018, 10, 1772. [Google Scholar] [CrossRef]
39. Verster, J.C.; Koenig, J. Caffeine Intake and Its Sources: A Review of National Representative Studies. Crit. Rev. Food Sci. Nutr. 2018, 58, 1250–1259. [Google Scholar] [CrossRef]
40. Andrews, K.W.; Schweitzer, A.; Zhao, C.; Holden, J.M.; Roseland, J.M.; Brandt, M.; Dwyer, J.T.; Picciano, M.F.; Saldanha, L.G.; Fisher, K.D.; et al. The Caffeine Contents of Dietary Supplements Commonly Purchased in the US: Analysis of 53 Products with Caffeine-Containing Ingredients. Anal. Bioanal. Chem. 2007, 389, 231–239. [Google Scholar] [CrossRef]
41. Ahluwalia, N.; Herrick, K. Caffeine Intake from Food and Beverage Sources and Trends among Children and Adolescents in the United States: Review of National Quantitative Studies from 1999 to 2011. Adv. Nutr. 2015, 6, 102–111. [Google Scholar] [CrossRef]
42. Smith, A.P. Caffeine. In Nutritional Neuroscience; Liebermann, H.R., Kanarek, R.B., Prasad, C., Eds.; Taylor & Francis: Philadelphia, PA, USA, 2005; pp. 335–354. ISBN 0-415-31599-9. [Google Scholar]
43. Hansen, T.S.; Jess, T.; Vind, I.; Elkjaer, M.; Nielsen, M.F.; Gamborg, M.; Munkholm, P. Environmental Factors in Inflammatory Bowel Disease: A Case-Control Study Based on a Danish Inception Cohort. J. Crohn’s Colitis 2011, 5, 577–584. [Google Scholar] [CrossRef]
44. Ng, S.C.; Tang, W.; Leong, R.W.; Chen, M.; Ko, Y.; Studd, C.; Niewiadomski, O.; Bell, S.; Kamm, M.A.; de Silva, H.J.; et al. Environmental Risk Factors in Inflammatory Bowel Disease: A Population-Based Case-Control Study in Asia-Pacific. Gut 2015, 64, 1063–1071. [Google Scholar] [CrossRef]
45. Nie, J.-Y.; Zhao, Q. Beverage Consumption and Risk of Ulcerative Colitis. Medicine 2017, 96, e9070. [Google Scholar] [CrossRef]
46. Yang, Y.; Xiang, L.; He, J. Beverage Intake and Risk of Crohn Disease. Medicine 2019, 98, e15795. [Google Scholar] [CrossRef]
47. Barthel, C.; Wiegand, S.; Scharl, S.; Scharl, M.; Frei, P.; Vavricka, S.R.; Fried, M.; Sulz, M.C.; Wiegand, N.; Rogler, G.; et al. Patients’ Perceptions on the Impact of Coffee Consumption in Inflammatory Bowel Disease: Friend or Foe?—A Patient Survey. Nutr. J. 2015, 14, 78. [Google Scholar] [CrossRef]
48. Głąbska, D.; Guzek, D.; Lech, G. Analysis of the Nutrients and Food Products Intake of Polish Males with Ulcerative Colitis in Remission. Nutrients 2019, 11, 2333. [Google Scholar] [CrossRef]
49. Gacek, L.; Bączyk, G.; Skokowska, B.; Bielawska, A.; Brzezińska, R. The Level of Patients’ Knowladge about the Inflammatory Bowel Disease and Healthy Lifestyle. Pielęgniarstwo Polskie 2017, 63, 20–27. [Google Scholar] [CrossRef]
50. Xu, H.; Liu, T.; Hu, L.; Li, J.; Gan, C.; Xu, J.; Chen, F.; Xiang, Z.; Wang, X.; Sheng, J. Effect of Caffeine on Ovariectomy-Induced Osteoporosis in Rats. Biomed. Pharmacother. 2019, 112, 108650. [Google Scholar] [CrossRef]
51. Chau, Y.-P.; Au, P.C.M.; Li, G.H.Y.; Sing, C.-W.; Cheng, V.K.F.; Tan, K.C.B.; Kung, A.W.C.; Cheung, C.-L. Serum Metabolome of Coffee Consumption and Its Association with Bone Mineral Density: The Hong Kong Osteoporosis Study. J. Clin. Endocrinol. Metab. 2019, 105, e619–e627. [Google Scholar] [CrossRef]
52. Hasling, C.; Søndergaard, K.; Charles, P.; Mosekilde, L. Calcium Metabolism in Postmenopausal Osteoporotic Women Is Determined by Dietary Calcium and Coffee Intake. J. Nutr. 1992, 122, 1119–1126. [Google Scholar] [CrossRef]
53. Chang, H.-C.; Hsieh, C.-F.; Lin, Y.-C.; Tantoh, D.M.; Ko, P.-C.; Kung, Y.-Y.; Wang, M.-C.; Hsu, S.-Y.; Liaw, Y.-C.; Liaw, Y.-P. Does Coffee Drinking Have Beneficial Effects on Bone Health of Taiwanese Adults? A Longitudinal Study. BMC Public Health 2018, 18, 1273. [Google Scholar] [CrossRef]
54. Hallström, H.; Byberg, L.; Glynn, A.; Lemming, E.W.; Wolk, A.; Michaëlsson, K. Long-Term Coffee Consumption in Relation to Fracture Risk and Bone Mineral Density in Women. Am. J. Epidemiol. 2013, 178, 898–909. [Google Scholar] [CrossRef]
55. Barrett-Connor, E.; Chang, J.C.; Edelstein, S.L. Coffee-Associated Osteoporosis Offset by Daily Milk Consumption. The Rancho Bernardo Study. JAMA 1994, 271, 280–283. [Google Scholar] [CrossRef]
56. Choi, E.; Choi, K.-H.; Park, S.M.; Shin, D.; Joh, H.-K.; Cho, E. The Benefit of Bone Health by Drinking Coffee among Korean Postmenopausal Women: A Cross-Sectional Analysis of the Fourth & Fifth Korea National Health and Nutrition Examination Surveys. PLoS ONE 2016, 11, e0147762. [Google Scholar] [CrossRef]
57. Yu, Q.; Liu, Z.-H.; Lei, T.; Tang, Z. Subjective Evaluation of the Frequency of Coffee Intake and Relationship to Osteoporosis in Chinese Men. J. Health Popul. Nutr. 2016, 35, 24. [Google Scholar] [CrossRef]
58. Al-Othman, A.; Al-Musharaf, S.; Al-Daghri, N.M.; Yakout, S.; Alkharfy, K.M.; Al-Saleh, Y.; Al-Attas, O.S.; Alokail, M.S.; Moharram, O.; Sabico, S.; et al. Tea and Coffee Consumption in Relation to Vitamin D and Calcium Levels in Saudi Adolescents. Nutr. J. 2012, 11, 56. [Google Scholar] [CrossRef]
59. Barbalho, S.M.; Bosso, H.; Salzedas-Pescinini, L.M.; de Alvares Goulart, R. Green Tea: A Possibility in the Therapeutic Approach of Inflammatory Bowel Diseases? Green Tea and Inflammatory Bowel Diseases. Complement. Ther. Med. 2019, 43, 148–153. [Google Scholar] [CrossRef]
60. Zhang, Z.-F.; Yang, J.-L.; Jiang, H.-C.; Lai, Z.; Wu, F.; Liu, Z.-X. Updated Association of Tea Consumption and Bone Mineral Density: A Meta-Analysis. Medicine 2017, 96, e6437. [Google Scholar] [CrossRef]
61. Weerawatanakorn, M.; Hung, W.-L.; Pan, M.-H.; Li, S.; Li, D.; Wan, X.; Ho, C.-T. Chemistry and Health Beneficial Effects of Oolong Tea and Theasinensins. Food Sci. Hum. Wellness 2015, 4, 133–146. [Google Scholar] [CrossRef]
62. Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-Analyses. Gastroenterology 2019, 157, 647–659. [Google Scholar] [CrossRef] [PubMed]
63. Du, Y.; Ding, H.; Vanarsa, K.; Soomro, S.; Baig, S.; Hicks, J.; Mohan, C. Low Dose Epigallocatechin Gallate Alleviates Experimental Colitis by Subduing Inflammatory Cells and Cytokines, and Improving Intestinal Permeability. Nutrients 2019, 11, 1743. [Google Scholar] [CrossRef] [PubMed]
64. Bitzer, Z.T.; Elias, R.J.; Vijay-Kumar, M.; Lambert, J.D. (−)-Epigallocatechin-3-Gallate Decreases Colonic Inflammation and Permeability in a Mouse Model of Colitis, but Reduces Macronutrient Digestion and Exacerbates Weight Loss. Mol. Nutr. Food Res. 2016, 60, 2267–2274. [Google Scholar] [CrossRef] [PubMed]
65. Oz, H.S. Chronic Inflammatory Diseases and Green Tea Polyphenols. Nutrients 2017, 9, 561. [Google Scholar] [CrossRef] [PubMed]
66. Rahman, S.U.; Li, Y.; Huang, Y.; Zhu, L.; Feng, S.; Wu, J.; Wang, X. Treatment of Inflammatory Bowel Disease via Green Tea Polyphenols: Possible Application and Protective Approaches. Inflammopharmacology 2018, 26, 319–330. [Google Scholar] [CrossRef]
67. Liu, T.; Xiang, Z.; Chen, F.; Yin, D.; Huang, Y.; Xu, J.; Hu, L.; Xu, H.; Wang, X.; Sheng, J. Theabrownin Suppresses in Vitro Osteoclastogenesis and Prevents Bone Loss in Ovariectomized Rats. Biomed. Pharmacother. 2018, 106, 1339–1347. [Google Scholar] [CrossRef]
68. Shen, C.-L.; Chyu, M.-C.; Wang, J.-S. Tea and Bone Health: Steps Forward in Translational Nutrition12345. Am. J. Clin. Nutr. 2013, 98, 1694S–1699S. [Google Scholar] [CrossRef]
69. Shen, C.-L.; Chyu, M.-C.; Yeh, J.K.; Zhang, Y.; Pence, B.C.; Felton, C.K.; Brismée, J.-M.; Arjmandi, B.H.; Doctolero, S.; Wang, J.-S. Effect of Green Tea and Tai Chi on Bone Health in Postmenopausal Osteopenic Women: A 6-Month Randomized Placebo-Controlled Trial. Osteoporos. Int. 2012, 23, 1541–1552. [Google Scholar] [CrossRef]
70. Sun, K.; Wang, L.; Ma, Q.; Cui, Q.; Lv, Q.; Zhang, W.; Li, X. Association between Tea Consumption and Osteoporosis: A Meta-Analysis. Medicine 2017, 96, e9034. [Google Scholar] [CrossRef]
71. Li, X.; Qiao, Y.; Yu, C.; Guo, Y.; Bian, Z.; Yang, L.; Chen, Y.; Yan, S.; Xie, X.; Huang, D.; et al. Tea Consumption and Bone Health in Chinese Adults: A Population-Based Study. Osteoporos. Int. 2019, 30, 333–341. [Google Scholar] [CrossRef]
72. Huang, H.; Han, G.-Y.; Jing, L.-P.; Chen, Z.-Y.; Chen, Y.-M.; Xiao, S.-M. Tea Consumption Is Associated with Increased Bone Strength in Middle-Aged and Elderly Chinese Women. J. Nutr. Health Aging 2018, 22, 216–221. [Google Scholar] [CrossRef] [PubMed]
73. Guo, M.; Qu, H.; Xu, L.; Shi, D.-Z. Tea Consumption May Decrease the Risk of Osteoporosis: An Updated Meta-Analysis of Observational Studies. Nutr. Res. 2017, 42, 1–10. [Google Scholar] [CrossRef] [PubMed]
74. Prosberg, M.; Bendtsen, F.; Vind, I.; Petersen, A.M.; Gluud, L.L. The Association between the Gut Microbiota and the Inflammatory Bowel Disease Activity: A Systematic Review and Meta-Analysis. Scand. J. Gastroenterol. 2016, 51, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
75. Kruis, W.; Frič, P.; Pokrotnieks, J.; Lukáš, M.; Fixa, B.; Kaščák, M.; Kamm, M.A.; Weismueller, J.; Beglinger, C.; Stolte, M.; et al. Maintaining Remission of Ulcerative Colitis with the Probiotic Escherichia Coli Nissle 1917 Is as Effective as with Standard Mesalazine. Gut 2004, 53, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
76. Nishitsuji, K.; Watanabe, S.; Xiao, J.; Nagatomo, R.; Ogawa, H.; Tsunematsu, T.; Umemoto, H.; Morimoto, Y.; Akatsu, H.; Inoue, K.; et al. Effect of Coffee or Coffee Components on Gut Microbiome and Short-Chain Fatty Acids in a Mouse Model of Metabolic Syndrome. Sci. Rep. 2018, 8, 16173. [Google Scholar] [CrossRef]
77. Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
78. De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef]
79. Ogata, K.; Takeshita, T.; Shibata, Y.; Matsumi, R.; Kageyama, S.; Asakawa, M.; Yamashita, Y. Effect of Coffee on the Compositional Shift of Oral Indigenous Microbiota Cultured in Vitro. J. Oral Sci. 2019, 61, 418–424. [Google Scholar] [CrossRef]
80. Kleber Silveira, A.; Moresco, K.S.; Mautone Gomes, H.; da Silva Morrone, M.; Kich Grun, L.; Pens Gelain, D.; de Mattos Pereira, L.; Giongo, A.; Rodrigues De Oliveira, R.; Fonseca Moreira, J.C. Guarana (Paullinia Cupana Mart.) Alters Gut Microbiota and Modulates Redox Status, Partially via Caffeine in Wistar Rats. Phytother. Res. 2018, 32, 2466–2474. [Google Scholar] [CrossRef]
81. Lee, I.-A.; Low, D.; Kamba, A.; Llado, V.; Mizoguchi, E. Oral Caffeine Administration Ameliorates Acute Colitis by Suppressing Chitinase 3-like 1 Expression in Intestinal Epithelial Cells. J. Gastroenterol. 2014, 49, 1206–1216. [Google Scholar] [CrossRef]
82. Gao, X.; Xie, Q.; Kong, P.; Liu, L.; Sun, S.; Xiong, B.; Huang, B.; Yan, L.; Sheng, J.; Xiang, H. Polyphenol- and Caffeine-Rich Postfermented Pu-Erh Tea Improves Diet-Induced Metabolic Syndrome by Remodeling Intestinal Homeostasis in Mice. Infect. Immun. 2017, 86, e00601-17. [Google Scholar] [CrossRef] [PubMed]
83. Zhang, Z.; Mocanu, V.; Cai, C.; Dang, J.; Slater, L.; Deehan, E.C.; Walter, J.; Madsen, K.L. Impact of Fecal Microbiota Transplantation on Obesity and Metabolic Syndrome-A Systematic Review. Nutrients 2019, 11, 2291. [Google Scholar] [CrossRef] [PubMed]
84. Bancirova, M. Comparison of the Antioxidant Capacity and the Antimicrobial Activity of Black and Green Tea. Food Res. Int. 2010, 43, 1379–1382. [Google Scholar] [CrossRef]
85. Hänninen, A.; Toivonen, R.; Pöysti, S.; Belzer, C.; Plovier, H.; Ouwerkerk, J.P.; Emani, R.; Cani, P.D.; De Vos, W.M. Akkermansia Muciniphila Induces Gut Microbiota Remodelling and Controls Islet Autoimmunity in NOD Mice. Gut 2018, 67, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
86. Chen, W.; Liu, F.; Ling, Z.; Tong, X.; Xiang, C. Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer. PLoS ONE 2012, 7, e39743. [Google Scholar] [CrossRef] [PubMed]
87. Peters, B.A.; Dominianni, C.; Shapiro, J.A.; Church, T.R.; Wu, J.; Miller, G.; Yuen, E.; Freiman, H.; Lustbader, I.; Salik, J.; et al. The Gut Microbiota in Conventional and Serrated Precursors of Colorectal Cancer. Microbiome 2016, 4, 69. [Google Scholar] [CrossRef]
88. Flemer, B.; Warren, R.D.; Barrett, M.P.; Cisek, K.; Das, A.; Jeffery, I.B.; Hurley, E.; O’Riordain, M.; Shanahan, F.; O’Toole, P.W. The Oral Microbiota in Colorectal Cancer Is Distinctive and Predictive. Gut 2018, 67, 1454–1463. [Google Scholar] [CrossRef]
89. Mazzon, E.; Muià, C.; Paola, R.D.; Genovese, T.; Menegazzi, M.; De Sarro, A.; Suzuki, H.; Cuzzocrea, S. Green Tea Polyphenol Extract Attenuates Colon Injury Induced by Experimental Colitis. Free Radic. Res. 2005, 39, 1017–1025. [Google Scholar] [CrossRef]
90. Camacho, P.M.; Petak, S.M.; Binkley, N.; Clarke, B.L.; Harris, S.T.; Hurley, D.L.; Kleerekoper, M.; Lewiecki, E.M.; Miller, P.D.; Narula, H.S.; et al. American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis—2016—Executive Summary. Endocr. Pract. 2016, 22, 1111–1118. [Google Scholar] [CrossRef]