谷氨酰胺在肝损伤中的应用研究进展

闫静,叶琳

唐都医院营养科

  肝是人体重要的解毒器官。化学性肝损伤、缺血-再灌注损伤和非酒精性脂肪性肝病都存在不同程度的肝功能受损。谷氨酰胺作为条件必需氨基酸,在维持肠道的正常结构和功能中发挥着重要的作用。最近研究发现,谷氨酰胺可通过提高抗氧化能力抑制炎性反应、减少肝细胞凋亡、减轻化学性肝损伤、肝缺血-再灌注损伤和非酒精性脂肪肝。此外,谷氨酰胺还能改善胰岛素抵抗,而胰岛素抵抗与非酒精性脂肪肝密切相关。谷氨酰胺作为一个多功能氨基酸,在辅助治疗肝损伤方面具有一定潜力。

  肝疾病可由多种原因引起,如化学性中毒、脂肪或胶原纤维聚积、肝血流灌注变化、肝细胞结节样再生、与谷氨酰胺和谷氨酸代谢相关的基因表达发生改变等。各种原因引起的肝疾病通常都有不同程度的肝功能受损。有研究已证实,谷氨酰胺在正常生理状态及疾病状态下都发挥着重要作用,尤其在维持肠道正常功能中不可或缺【1】。近来的一些研究证实,补充谷氨酰胺对化学性肝损伤、缺血-再灌注损伤与非酒精性脂肪性肝病均有一定的治疗效果,以下就谷氨酰胺与肝功能受损的研究现状作一综述。

  1 谷氨酰胺的功能

  谷氨酰胺是人体内含量最丰富的游离氨基酸,也是一种条件必需氨基酸,同时作为一种免疫调节营养素,在临床实践中广泛应用。谷氨酰胺是嘌呤、嘧啶、核苷酸、氨基酸、糖和谷胱甘肽等的前体物质,而谷胱甘肽是体内最重要的抗氧化剂。谷氨酰胺有助于精氨酸的合成,精氨酸在生殖和免疫功能中发挥着重要作用【2】。同时,谷氨酰胺也是氮的主要载体和供体,能促进氨的解毒,并维持酸碱平衡。另外,谷氨酰胺作为快速分化细胞(肠上皮细胞和淋巴细胞)的主要能量来源,能帮助维持肠道的形态和免疫功能,防止细菌易位【3】。谷氨酰胺的合成和分解代谢分别由谷氨酰胺合成酶和谷氨酰胺酶参与。其合成的主要来源是谷氨酸、支链氨基酸和氨,由谷氨酰胺合成酶催化谷氨酰胺合成的最后一步。在肝组织中,谷氨酰胺转运到门静脉周围的肝细胞,然后被谷氨酰胺酶水解为谷氨酸和氨【4】。在应激状态下,如败血症、外伤、感染和危重症等,谷氨酰胺消耗殆尽。近来研究发现,谷氨酰胺可用于多种疾病的辅助治疗,如减轻肠道炎症、调节肠道菌群和机体固有免疫【3,5,6】,减轻放化疗引起的肠黏膜损伤【7,8】,通过调控抗氧化防御系统,改善糖尿病大鼠及心肌梗塞患者的心功能【9,10】,以及通过抑制晚期糖基化最终产物受体和炎性因子的产生,减轻急性肺损伤等【11】。

  然而,与正常细胞相比,肿瘤细胞的生长和增殖更依赖于谷氨酰胺,pH值较低会影响肿瘤细胞的生长,而谷氨酰胺不仅是肿瘤细胞碳和氮的来源,更通过氨的释放改善肿瘤细胞的酸性环境【12】。最近的研究也发现,高剂量谷氨酰胺能增加多器官功能衰竭危重症患者的病死率,可能是因为外源性谷氨酰胺对患者的影响取决于炎症程度,对脓毒症和多器官功能障碍的患者,外源性谷氨酰胺可能会增加炎性反应,而不是提高免疫功能【13-15】。

  2 谷氨酰胺与化学性肝损伤

  乙醇或药物引起的肝损伤与氧化应激、脂质过氧化、免疫应答和炎性反应有关【16,17】。Yu等【18】发现,静脉给予谷氨酰胺能通过增加谷胱甘肽的生物合成和肝组织中谷胱甘肽的贮存,减轻化疗引起的大鼠肝损伤。Turkez等【19】用2,3,7,8-四氯-p-二恶英建立大鼠原代肝细胞损伤模型,发现谷氨酰胺能显著增加肝细胞的抗氧化能力和谷胱甘肽水平、降低乳酸脱氢酶水平,并减少微核肝细胞数目。微核肝细胞的产生是DNA氧化损伤的关键分子标记物【20】。不过,补充谷氨酰胺有最大剂量,超过一定量会影响尿素的功能和白蛋白的产生。此外,由于谷氨酰胺与丙氨酸、丝氨酸的转运由同一系统介导。因此,高浓度的谷氨酰胺会抑制丙氨酸和丝氨酸的吸收【21】。

  然而,Peng等【22】认为,谷氨酰胺对慢性酒精性肝损伤的保护作用可能并不依赖于它的抗氧化作用。他们在研究中发现,模型组与对照组的肝细胞色素P4502E1、谷胱甘肽和脂质过氧化产物并无差别,认为谷氨酰胺可能通过降低血浆肿瘤坏死因子-α和白细胞介素-1β水平抑制炎性反应。由于乙醇促进肠道革兰阴性细菌的生长,可能会导致内毒素聚积【23】。乙醛和一氧化氮的产生可使小肠的通透性增加,内毒素从小肠转移至肝和体循环,激活肝巨噬细胞(Kupffer细胞),从而增加炎性递质的释放和炎性细胞浸润,导致肝损伤【24】。由于谷氨酰胺在维持肠道完整性方面发挥重要作用,所以,可防止乙醇诱导的肠道通透性增加及内毒素转移,从而减轻肝损伤。

  接受肠外营养的患者尤其是新生儿和婴儿也容易发生肝损伤。研究发现,补充谷氨酰胺能减轻肠外营养引起的肝损害。Shaw等【25】发现,肠外营养能导致大鼠肝细胞色素P450活性降低,添加谷氨酰胺能防止出现该情况。据Wu等【26】研究观察,给使用肠外营养的幼兔添加谷氨酰胺能减少肝细胞凋亡,并降低丙二醛的含量。Wang等【27】也发现,给早产儿肠外营养液中添加谷氨酰胺,谷草转氨酶(天冬氨酸转氨酶)、γ-谷氨酰转移酶水平明显降低。然而,Paiva等【28】却发现,补充谷氨酰胺并不能改善肝外胆管梗阻引发的与肝酶和组织学变化有关的参数。

  3 谷氨酰胺与肝缺血-再灌注损伤

  肝缺血-再灌注损伤与肝大部切除和肝移植有关,将会导致严重的并发症,如肝功能衰竭和多器官功能障碍综合征,而且缺血-再灌注损伤的严重程度与病死率显著相关性【29,30】。活化的肝巨噬细胞和中性粒细胞在释放活性氧类自由基的同时还释放一系列炎性因子(白细胞介素-6和肿瘤坏死因子-α),炎性因子反过来激活白细胞,并增加活性氧类的释放【31,32】。活性氧类刺激钙在线粒体中积聚,钙反过来又促进线粒体中活性氧类的产生,形成恶性循环【33】。肝巨噬细胞产生于肝窦的活性氧类,参与早期肝血管和实质细胞损伤。由于谷氨酰胺的消耗,谷胱甘肽合成减少,缺血-再灌注损伤组织的抗氧化能力锐减【34】。因此,许多研究致力于揭示补充谷氨酰胺对机体抗氧化防御能力和炎性反应的影响。有研究发现,肝缺血-再灌注损伤前24h用L-丙氨酰-L-谷氨酰胺双肽作预处理,可降低ALT、谷草转氨酶水平以及多腺苷二磷酸核糖聚合酶活性。多腺苷二磷酸核糖聚合酶是核转录因子κB的辅因子,能通过增加炎性递质的产生延长伤口愈合时间【35】。在严重损伤细胞中,多腺苷二磷酸核糖聚合酶过强的活性能导致ATP耗竭【36】。谷氨酰胺能抑制细胞内钙超载,增强钠/钾ATP酶和超氧化物歧化酶的活性,活性增强的钠/钾ATP酶也能减少钙内流。同时,谷氨酰胺能抑制活性氧类的产生,通过降低白细胞介素-1和肿瘤坏死因子-α的表达抑制炎性反应,上调Bcl-2蛋白,并下调细胞间黏附分子1和Bax蛋白的表达,以减少肝细胞凋亡【37】。此外,肝缺血-再灌注损伤也会影响肠黏膜屏障功能,使用谷氨酰胺可减轻缺血-再灌注损伤对肠黏膜的损伤【38】。然而,Noh等【39】认为,谷氨酰胺不能减轻大鼠肝缺血-再灌注损伤,因为他们发现谷氨酰胺并不能上调热休克蛋白70。

  谷氨酰胺对肝切除的患者同样有益。肝再生是肝部分切除术后代偿性增生的过程。对大鼠肝部分切除后,大约7~10d后恢复至正常状态【40】。人体肝在部分切除或移植后前7d,质量迅速增加,大约3个月后完全恢复【41】。有研究发现,肿瘤坏死因子-α和白细胞介素-6可参与肝再生。肝巨噬细胞释放肿瘤坏死因子-α,肿瘤坏死因子-α与其受体结合,激活核转录因子-κB。核转录因子-κB再调控白细胞介素-6的转录。白细胞介素-6与肝细胞表面受体结合,激活STAT3,进而激活与细胞增殖和急性期反应相关的基因表达【42】。Richard等【43】发现,谷氨酰胺能降低肝部分切除术后的C反应蛋白水平,减轻炎性反应。为60%肝切除大鼠膳食补充谷氨酰胺能升高白蛋白水平、增加肝细胞的复制【44】。如果谷氨酰胺具有抗炎作用,那是否会降低肿瘤坏死因子-α和白细胞介素-6水平,对肝细胞再生是否有影响,这些问题都需要进一步的研究证实。

  4 谷氨酰胺与非酒精性脂肪性肝病

  非酒精性脂肪性肝病是代谢综合征的临床表现之一。游离脂肪酸与胆固醇在线粒体中聚集,导致肿瘤坏死因子-α介导的肝损伤和活性氧类形成,促进胰岛素抵抗的形成和胰腺B细胞功能障碍【45-47】。氧化应激是非酒精性脂肪性肝病发生的独立因素。由于胰岛素分泌后直接进入门静脉,大部分通过肝清除【48】。因此,胰岛素抵抗和2型糖尿病与非酒精性脂肪性肝病密切相关。

  有研究发现,谷氨酰胺对高脂饮食诱导的大鼠非酒精性脂肪性肝病具有一定的保护作用。谷氨酰胺能减轻高脂饮食造成的谷胱甘肽、丙二醛升高,减轻肝组织的病理改变,同时能抑制肿瘤坏死因子-α的产生和活化核转录因子-κB【49】。谷氨酰胺产生的谷胱甘肽能阻止氧化损伤,补充谷氨酰胺还有利于谷胱甘肽贮存【50】。对2型糖尿病的患者,谷胱甘肽水平升高能增加胰岛素敏感性和胰岛B细胞对葡萄糖的反应【51】。Cheng等【52】通过研究探讨代谢综合征的可能机制,首次发现谷氨酰胺/谷氨酸比值较高的人群未来罹患糖尿病的风险较低。他们还发现,给小鼠膳食中添加谷氨酰胺能改善糖耐量,并降低血压。Prada等【53】发现,给大鼠补充谷氨酰胺能诱导脂肪组织的胰岛素抵抗,减少脂肪堆积,同时,肝、肌肉和脂肪组织中肿瘤坏死因子-α和白细胞介素-6水平下降,c-Jun氨基末端激酶、IκB激酶β亚单位和雷帕霉素靶蛋白活性减弱,从而减轻胰岛素抵抗,改善肝和肌肉中胰岛素信号转导。Sato等【54】评估心脏手术后患者胰岛素敏感性和不良事件之间的关系时发现胰岛素敏感性每降低1mg/kg/min,术后并发症相应增加。同样,静脉给予重症创伤患者谷氨酰胺或丙氨酰谷氨酰胺双肽能降低高血糖的发生,减少胰岛素的用量【55,56】。Cui等【57】也发现,结肠癌术后患者静脉给予谷氨酰胺能改善血糖-胰岛素稳态、降低肿瘤坏死因子-α和游离脂肪酸水平。谷氨酰胺对胰岛素抵抗的改善可能是由于增加了胰高血糖素样肽1和葡萄糖依赖性促胰岛素多肽,从而使胰岛素的分泌增强【58】。

  谷氨酰胺作为一种功能性氨基酸参与细胞增殖、蛋白质折叠、抗氧化和免疫反应,它对肠黏膜屏障的保护作用已被证实。越来越多的证据表明,补充谷氨酰胺在治疗肝疾病中可能发挥有益的作用,但具体作用及相关机制仍不明确,谷氨酰胺对肠道的影响也可能影响到其对肝的作用。此外,还需要考虑合适的剂量及与其他氨基酸的相互作用,这些都需要进一步研究与探讨。

参考文献

  1. Wang B, Wu G, Zhou Z, et al. Glutamine and intestinal barrier function. Amino Acids. 2015;47(10):2143-2154.

  2. Ligthart MGC, Poll MC, Boelens PG, et al. Glutamine is an important precursor for de novo synthesis of arginine in humans. Am J Clin Nutr. 2008;87(5):1282-1289.

  3. Wang X, Pierre JF, Heneghan AF, et al. Glutamine Improves Innate immunity and prevents bacterial enteroinvasion during parenteral nutrition. JPEN J Parenter Enteral Nutr. 2015;39(6):688-697.

  4. Newsholme P, Procopio J, Lima MM, et al. Glutamine and glutamate- their central role in cell metabolism and function. Cell Biochem Funct. 2003;21(1):1-9.

  5. Ren W, Duan J, Yin J, et al. Dietary L-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids. 2014;46(10):2403-2413.

  6. Pai MH, Liu JJ, Yeh SL, et al. Glutamine modulates acute dextran sulphate sodium-induced changes in small-intestinal intraepithelial γδ-T-lymphocyte expression in mice. Br J Nutr. 2014;111(6):1032-1039.

  7. Beutheu S, Ouelaa W, Guérin C, et al. Glutamine supplementation, but not combined glutamine and arginine supplementation, improves gut barrier function during chemotherapy-induced intestinal mucositis in rats. Clin Nutr. 2014;33(4):694-701.

  8. Takechi H, Mawatari K, Harada N, et al. Glutamine protects the small intestinal mucosa in anticancer drug-induced rat enteritis model. J Med Invest. 2014;61(1-2):59-64.

  9. Badole SL, Jangam GB, Chaudhari SM, et al. L-glutamine supplementation prevents the development of experimental diabetic cardiomyopathy in streptozotocin-nicotinamide induced diabetic rats. PLoS One. 2014;9(3):e92697.

  10. Mao Y, Wang SQ, Mao XB, et al. Intestinal barrier function in patients with acute myocardial infarction and the therapeutic effect of glutamine. Int J Cardiol. 2011;146(3):432-433.

  11. Chuang YC, Shaw HM, Chen CC, et al. Short-term glutamine supplementation decreases lung inflammation and the receptor for advanced glycation end-products expression in direct acute lung injury in mice. BMC Pulm Med. 2014;14:115.

  12. Huang W, Choi W, Chen Y, et al. A proposed role for glutamine in cancer cell growth through acid resistance. Cell Res. 2013;23(5):724-727.

  13. Heyland DK, Elke G, Cook D, et al. Glutamine and antioxidants in the critically Ill patient: A post hoc analysis of a large-scale randomized trial. JPEN J Parenter Enteral Nutr. 2015;39(4):401-409.

  14. Cynober L, Bandt JP. Glutamine in the intensive care unit. Curr Opin Clin Nutr Metab Care. 2014;17(1):98-104.

  15. Oudemans SHM, Zanten AR. Glutamine supplementation in the critically ill: friend or foe? Crit Care. 2014;18(3):143.

  16. Lumeng L, Crabb DW. Alcoholic liver disease. Curr Opin Gastroenterol. 2001;17(3):211-220.

  17. Schaffert CS, Duryee MJ, Hunter CD, et al. Alcohol metabolites and lipopolysaccharide: roles in the development and / or progression of alcoholic liver disease. World J Gastroenterol. 2009;15(10):1209-1218.

  18. Yu JC, Jiang ZM, Li DM. Glutamine: a precursor of glutathione and its effect on liver. World J Gastroenterol. 1999;5(2):143-146.

  19. Turkez H, Geyikoglu F, Yousef MI, et al. Ameliorative effect of supplementation with L-glutamine on oxidative stress, DNA damage, cell viability and hepatotoxicity induced by 2,3,7,8-tetra chloro di benzo-p-dioxin in rat hepatocyte cultures. Cytotechnology. 2012;64(6):687-699.

  20. Lee TK, O'Brien KF, Wang W, et al. Radioprotective effect of American ginseng on human lymphocytes at 90 minutes postirradiation: a study of 40 cases. J Altern Complement Med. 2010;16(5):561-567.

  21. Yang H, Ierapetritou MG, Roth CM. Effects of amino acid transport limitations on cultured hepatocytes. Biophys Chem. 2010;152(1-3):89-98.

  22. Peng HC, Chen YL, Chen JR, et al. Effects of glutamine administration on inflammatory responses in chronic ethanol-fed rats. J Nutr Biochem. 2011;22(3):282-288.

  23. Purohit V, Bode JC, Bode C, et al. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol. 2008;42(5):349-361.

  24. Bode C, Bode JC. Activation of the innate immune system and alcoholic liver disease: effects of ethanol perse or enhanced intestinal translocation of bacterial toxins induced by ethanol? Alcohol Clin Exp Res. 2005;29(11 Suppl):166S-171S.

  25. Shaw AA, Hall SD, Franklin MR, et al. The influence of L-glutamine on the depression of hepatic cytochrome P450 activity in male rats caused by total parenteral nutrition. Drug Meta Dispos. 2002;30:177-182.

  26. Wu J, Hong L, Cai W, et al. Glutamine attenuates TPN-associated liver injury in infant rabbits. Eur J Pediatr. 2007;166(6):601-606.

  27. Wang Y, Cai W, Tao YX, et al. Glutamine supplementation in preterm infants receiving parenteral nutrition leads to an early improvement in liver function. Asia Pac J Clin Nutr. 2013;22(4):530-536.

  28. Paiva NMC, Almeida RE, Xavier MM, et al. Influence of glutamine on morphological and functional changes of liver in the presence of extrahepatic biliary obstruction in rats. Acta Cir Bras. 2010;25(4):375-380.

  29. Lemasters JJ, Thurman RG. Reperfusion injury after liver preservation for transplantation. Annu Rev Pharmacol Toxicol. 1997;37:327-338.

  30. Belghiti J, Noun R, Malafosse R, et al. Continuous versus intermittent portal triad clamping for liver resection: a controlled study. Ann Surg. 1999;229(3):369-375.

  31. Jaeschke H. Reactive oxygen and ischemia / reperfusion injury of the liver. Chem Biol Interact, 1991, 79(2):115-136.

  32. Donnahoo KK, Meng X, Ao L, et al. Differential cellular immunolocalization of renal tumour necrosis factor-alpha production during ischaemia versus endotoxaemia. Immunology. 2001;102(1):53-58.

  33. Sedlic F, Sepac A, Pravdic D, et al. Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: roles of ROS and Ca2+. Am J Physiol Cell Physiol, 2010;299(2):506-515.

  34. El-Hamoly T, Hegedüs C, Lakatos P, et al. Activation of poly (ADP-ribose) polymerase-1 delays wound healing by regulating keratinocyte migration and production of inflammatory mediators. Mol Med. 2014;20:363-371.

  35. Stangl R, Szijártó A, nody P, et al. Reduction of liver ischemiareperfusion injury via glutamine pretreatment. J Surg Res. 2011;166(1):95-103.

  36. Jagtap P, Szabó C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. 2005;4(5):421-440.

  37. Xu F, Dai CL, Peng SL, et al. Preconditioning with glutamine protects against ischemia / reperfusion-induced hepatic injury in rats with obstructive jaundice. Pharmacology. 2014;93(3-4):155-165.

  38. 王卉, 李丽, 肖云瑾, 等. 谷氨酰胺对肝脏手术后缺血再灌注肠道功能的影响. 临床合理用药. 2015;8(1A):73-74.

  39. Noh J, Behrends M, Choi S, et al. Glutamine does not protect against hepatic warm ischemia / reperfusion injury in rats. J Gastrointest Surg. 2006;10(2):234-239.

  40. Bucher NL. Regeneration of mammalian liver. Int Rev Cytol. 1963;15:245-300.

  41. Marcos A, Fisher RA, Ham JM, et al. Liver regeneration and function in donor and recipient after right lobe adult to adult living donor liver transplantation. Transplantation. 2000;69(7):1375-1379.

  42. Fausto N, Riehle KJ. Mechanisms of liver regeneration and their clinical implications. J Hepatobiliary Pancreat Surg. 2005;12(3):181-189.

  43. Richard V, Dahiya D, Kaman L, et al. Effect of perioperative glutamine administration on C-reactive protein and liver function tests in patients undergoing hepatic resection. Pol Przegl Chir. 2014;86(1):11-16.

  44. Magalhes CR, Malafaia O, Torres OJ, et al. Liver regeneration with l-glutamine supplemented diet: experimental study in rats. Rev Col Bras. 2014;41(2):117-121.

  45. Feldstein AE, Werneburg NW, Canbay A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology. 2004;40(1):185-194.

  46. Marí M, Caballero F, Colell A, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006;4(3):185-198.

  47. Firneisz G. Non-alcoholic fatty liver disease and type 2 diabetes mellitus: the liver disease of our age? World J Gastroenterol. 2014;20(27):9072-9089.

  48. Gruben N, Shiri SR, Koonen DP, et al. Nonalcoholic fatty liver disease: A main driver of insulin resistance or a dangerous liaison? Biochim Biophys Acta. 2014;1842(11):2329-2343.

  49. Lin Z, Cai F, Lin N, et al. Effects of glutamine on oxidative stress and nuclear factor-κB expression in the livers of rats with nonalcoholic fatty liver disease. Exp Ther Med. 2014;7(2):365-370.

  50. Hong RW, Rounds JD, Helton WS, et al. Glutamine preserves liver glutathione after lethal hepatic injury. Ann Surg. 1992;215(2):114-119.

  51. De Mattia G, Bravi MC, Laurenti O, et al. Influence of reduced glutathione infusion on glucose metabolism in patients with noninsulin-dependent diabetes mellitus. Metabolism. 1998;47(8):993-997.

  52. Cheng S, Rhee EP, Larson MG, et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125(18):2222-2231.

  53. Prada PO, Hirabara SM, Souza CT, et al. L-glutamine supplementation induces insulin resistance in adipose tissue and improves insulin signaling in liver and muscle of rats with diet-induced obesity. Diabetologia. 2007;50(9):1949-1959.

  54. Sato H, Carvalho G, Sato T, et al. The association of preoperative glycemic control, intraoperative insulin sensitivity, and outcomes after cardiac surgery. J Clin Endocrinol Metab. 2010;95(9):4338-4344.

  55. Bakalar B, Duska F, Pachl J, et al. Parenterally administered dipeptide alanyl-glutamine prevents worsening of insulin sensitivity in multiple-trauma patients. Crit Care Med. 2006;34(2):381-386.

  56. Grintescu IM, Luca VI, Cucereanu BI, et al. The influence of parenteral glutamine supplementation on glucose homeostasis in critically ill polytrauma patients-A randomized-controlled clinical study. Clin Nutr. 2015;34(3):377-382.

  57. Cui Y, Hu L, Liu YJ, et al. Intravenous alanyl-L-glutamine balances glucose-insulin homeostasis and facilitates recovery in patients undergoing colonic resection: a randomised controlled trial. Eur J Anaesthesiol. 2014;31(4):212-218.

  58. Greenfield JR, Farooqi IS, Keogh JM, et al. Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. Am J Clin Nutr. 2009;89(1):106-113.

原文参见:肠外与肠内营养. 2016;23(1):55-58.

(0)

相关推荐