【分享】综述 | 中枢神经系统疾病PET显像剂研究进展
文章来源:中华核医学与分子影像杂志, 2018,38(11) : 756-761.
作者:伍露琴 张慧玮 管一晖
单位:200235 上海,复旦大学附属华山医院PET中心
引用本文:伍露琴, 张慧玮, 管一晖. 中枢神经系统疾病PET显像剂研究进展 [J] . 中华核医学与分子影像杂志,2018,38( 11 ): 756-761. DOI: 10.3760/cma.j.issn.2095-2848.2018.11.012
Research progress on central nervous system PET tracers
Wu Luqin, Zhang Huiwei, Guan Yihui
Cite as Chin J Nucl Med Mol Imaging, 2018,38(11): 756-761. DOI: 10.3760/cma.j.issn.2095-2848.2018.11.012
摘要
中枢神经系统疾病复杂,目前对其认知非常有限。PET分子影像检查具有无创性,在中枢神经系统疾病的诊断中发挥着重要作用。运用PET检查来了解脑部功能变化是近十几年来的研究热点,而PET脑显像的关键点在其分子靶向探针。该文结合2016年美国核医学与分子影像学会年会报告,对中枢神经系统PET显像剂的研究进展进行综述。
早期诊断对中枢神经系统疾病有效及时的治疗非常重要。PET在神经系统疾病的诊断和疗效评价上具有独特优势。新型分子探针显像剂的研发是PET影像技术发展的核心之一。本文结合2016年美国核医学与分子影像学会(Society of Nuclear Medicine and Molecular Imaging, SNMMI)年会(简称本次年会)报告,对近年来中枢神经系统疾病探针的发展作一概述。
一、阿尔茨海默病(Alzheimer′s disease, AD)
AD是目前世界范围内发病率最高的神经退行性疾病,也是本次年会神经系统领域研究最多的疾病。AD不可逆,其主要临床特征是记忆缺失和认知功能减退。由于没有有效的治疗方法,AD患者确诊后的生存期通常为7~10年,早期诊断可能会给疾病转归带来益处。AD的病理特点是细胞外β淀粉样蛋白(amyloid β,Aβ)沉积、细胞内神经元纤维缠结(tau蛋白),以及突触和神经元的缺失[1]。不同类型的分子探针正是根据上述病理特征加以研发的。
1.Aβ靶向显像剂。18F-2-(1-{6-[(2-氟代乙基)(甲基)氨]-2-萘}-亚乙基)-丙二腈{2-(1-{6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl}-ethylidene)malononitrile, FDDNP}是第1个有前景的Aβ靶向显像剂,但该显像剂不仅与细胞外Aβ结合,也与细胞内tau蛋白结合,与11C-匹兹堡化合物B(Pittsburgh compound B, PIB)和18F-脱氧葡萄糖(fluorodeoxyglucose, FDG)的纵向对比研究[2]显示,该显像剂难以诊断AD的发展进程。11C-PIB是目前应用最广泛的用于人体的选择性Aβ靶向PET显像剂,但由于其半衰期较短(20.3 min),18F标记(半衰期为109.8 min)的分子探针(即第2代Aβ显像剂)应运而生,具体包括18F-flobetaben、18F-florbetapir和18F-flutemetamol。这3种显像剂皆通过了食品与药品监督管理局(Food and Drug Administration, FDA)和欧洲药品管理局(European Medicines Agency, EMA)的审批,使得Aβ显像的普遍使用成为可能。由于18F-flobetaben和18F-florbetapir的皮质保留较11C-PIB低[3,4],导致白质非特异性结合相对较高,而18F-flutemetamol皮质保留与11C-PIB类似,但白质非特异性结合力较强[5],以上皆导致图像信噪比低,给读片带来一定的困难[6]。第3代Aβ显像剂18F-2-[2-氟代-6-(甲基氨基)3-吡啶基]-1-苯并呋喃-5-醇{2-[2-fluoro-6-(methylamino)-3-pyridinyl]-1-benzofuran-5-ol, AZD4694}顺势而生,该显像剂与11C-PIB有类似的Aβ结合力,具有皮质保留度高以及低的白质非特异性结合能力[7]。
在本次年会上,关于Aβ的论文共有15篇,应用较多的显像剂是11C-PIB、18F-florbetapir和18F-florbetaben。其中有2个新探针:18F-FC1119S和18F-2-(p-甲基氨基苯基)-7-2-(氟氧乙基)咪唑并[2,1-b]苯并噻唑{2-(p-methylaminophenyl)-7-(2-fluoroethoxy)imidazo[2,1-b]benzothiazole, FIBT},研究[8,9]结果显示其安全性和准确性均较高,但还需后续批量人体研究加以证实。疾病早期Aβ只沉积于特定区域,随着时间推移,沉积会发生在别的区域。对于该现象的发生一直存在2种假说:(1)Aβ沉积由1个区域延伸到别的区域;(2)不同区域Aβ的特点和聚集程度均不同。本次年会的1篇文献[10]报道利用18F-florbetapir来验证哪种假说更合理,结果显示所有区域Aβ沉积都同时进行并以相同速度增加,只是由于各自携带能力不同造成不同区域分布有先后顺序。这可能使Aβ在疾病的进程观察中会显得无选择性,因此需要借助其他探针来进一步研究。
2.Tau蛋白。Tau蛋白是近10年来研究的热点。2005年,Okamura等[11]从2 000多个小分子化合物里筛选出了喹啉衍生物和苯并咪唑类化合物,但该类显像剂较Aβ显像剂特异性较差,且不能显像非AD类tau蛋白疾病。Matsumura等[12]从72 455个化合物里筛选出了1个苯并噻唑类化合物,该化合物经结构修饰得到18F-(E)-4-[(6-{2-[2-(2-氟代乙氧基)乙氧基]乙氧基}苯并[d]噻唑-2-基)偶氮]-N,N-二甲基苯胺{(E)-4-((6-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)benzo[d]thiazol-2-yl)diazenyl)-N,N-dimethylaniline, FPPDB},但该显像剂对tau蛋白的结合力与特异性均较差。目前,高结合力且选择性强的tau蛋白显像剂主要分为3类:(1)喹啉衍生物类,18F-6-(2-氟代乙氧基)-2-(4-氨基苯基)喹啉[6-(2-fluoroethoxy)-2-(4-aminophenyl)quinolone, THK523][13]是第1个此类显像剂,18F-6-[(3-氟-2-羟基)丙氧基]-2-(4-甲基氨基苯基)喹啉{6-[(3-18F-fluoro-2-hydroxy)propoxy]-2-(4-methylaminophenyl)quinoline, THK5117}和18F-6-[(3-氟-2-羟基)丙氧基]-2-(4-二甲氨基苯基)喹淋{6-[3-18F-fluoro-2-hydroxy)propoxy]-2-(4-dimethylaminophenyl)quinoline, THK5105}是对18F-THK523进行结构修饰后得到的结合力和特异性更强的显像剂[14],而18F-THK5351是18F-THK5117经结构修饰后得到的具有更快动力学、更低白质保留及更强信噪比的显像剂[15,16];(2)苯并噻唑类化合物,如11C-2-[(1E,3E)-4-(6-甲胺基吡啶-3-基)丁烷-1,3-二烯]苯并[d]噻唑-6-酚{2-((1E,3E)-4-(6-methylaminopyridin-3-yl)buta-1,3-dienyl)benzo[d]thiazol-6-ol, PBB3},该显像剂见光不稳定[17],合成纯化过程中需避光,故临床应用较少;(3)苯并咪唑嘧啶类化合物,18F-7-(6-氟代吡啶-3-基)-5-氢-吡啶[2,3-b]吲哚{(7-(6-fluoropyridine-3-yl)-5-hydro-pyridine[2,3-b]indole, AV-1451}[18]和18F-2-[4-(2-氟代乙基)哌啶-1-基]苯并[4,5]咪唑[1,2-a]嘧啶{2-(4-(2-fluoroethyl)piperidine-1-yl)phenyl[4,5]imidazole[1,2-a]pyrimidine, AV-680}[19]与tau蛋白的结合力高、特异性强,与白质结合力低,具有良好的药代动力学参数[20,21],其中18F-AV-1451是目前应用最广泛的tau蛋白显像剂。
在本次年会上,关于tau蛋白的论文有7篇,应用最多的显像剂是18F-AV-1451。新探针18F-MK-6240[22]临床前研究参数(如选择特异性及药代动力学)皆较好,但仍需后续深入的临床研究。Gomez等[23]尝试利用AT8 tau抗体来验证18F-AV-1451是否不仅能与AD疾病的tau蛋白结合,也能与非AD类疾病的tau蛋白结合,但结果缺乏大数据支持,需后续人体研究。
3.其他类。糖基化终产物受体(receptor for advanced glycation endproducts, RAGE)是一个相对分子质量为3.5×104的膜蛋白,其在AD中的作用比较复杂,被认为是在Aβ进入大脑同时放大Aβ所引起病理反应的媒介。18F-RAGER是第1个靶向RAGE的小分子PET显像剂[24],能定位RAGE的分布,但该显像剂非特异性结合较高、代谢较快,还需开发更具优势的RAGE显像剂。
在本次年会上,还有学者报道了1个新探针63Zn-zinc citrate[25],该探针旨在通过对锌转运进行显像达到诊断AD的目的。但锌显像与Aβ显像和18F-FDG显像间有着区域性差别,因此还需更多研究。本次年会还有3篇论文描述了tau蛋白显像与Aβ显像的对比研究,结果显示tau蛋白与AD的联系更直接,验证了前期的研究观点[26]。
二、帕金森病(Parkinson′s disease, PD)
PD是发病率仅次于AD的神经退行性疾病,其主要病理特征是黑质多巴胺能神经元的丢失。目前主要是通过运动障碍症状来进行PD临床诊断,但该诊断方法较为局限,首先该方法不能将PD与帕金森叠加综合征(如多系统萎缩、进行性核上性麻痹)相区分,其次,运动障碍通常在50%~60%黑质多巴胺神经元丢失后才出现。如何早期诊断PD以及区分帕金森叠加综合征是PET检查的重点所在。PD分子显像剂根据其靶向部位不同分为突触前显像剂和突触后显像剂。
1.突触前显像剂。(1)囊泡单胺转运体2(vesicular monoamine transporter 2, VMAT2)。VMAT2负责转运细胞内单胺类神经递质,使多巴胺存储于囊泡,是神经内分泌细胞膜上必不可少的蛋白质。与多巴胺转运蛋白(dopamine transporter, DAT)和芳香氨基酸脱羧酶类显像剂不同,靶向VMAT2显像剂不受药物治疗以及代偿机制的影响[27],主要有11C-9-(+)-二氢丁苯那嗪[9-(+)-dihydrotetrabenazine, (+)-DTBZ]、18F-9-氟丙基-二氢丁苯那嗪(9-fluoropropyl-dihydrotetrabenazine, FP-DTBZ]和18F-FP-(+)-DTBZ (18F-AV-133)。11C-(+)-DTBZ可以定量黑质纹状体,可以对健康人纹状体随年龄增长其VMAT2结合的变化进行显像,PD患者纹状体VMAT2对11C-(+)-DTBZ的摄取减少[28]。由于11C半衰期较短,半衰期相对较长的18F-FP-DTBZ于2006年被合成,该显像剂对检测单胺类神经元突触末梢减少的灵敏度高,可以监测PD的严重程度[29]。18F-AV-133对VMAT2具有高结合力,可用于评估VMAT2密度,用于PD患者时可以明显检测到纹状体和中脑VMAT2的减少[30],是目前应用最广泛的VMAT2类显像剂。
(2)多巴胺显像剂。多巴胺显像剂易受药物和机体状态的影响。DAT是体内再摄取突触间隙多巴胺的功能蛋白,其水平的下调意味着多巴胺水平的降低,DAT的结合在壳核、尾状核和腹侧纹状体最高,随年龄增长结合缓慢降低[31]。该类显像剂有11C-2β-甲氧甲酰-3β-(4-氟苯基)托烷[2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane, CFT]和18F-N-3-氟代丙基-2β-羧甲氧基-3β-(4-碘苯基)降托烷[N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl)nortropane, FP-CIT][32],其中18F-FP-CIT在纹状体的信噪比高,与DAT结合力强,在PD早期,纹状体18F-FP-CIT结合明显降低,可用来诊断PD的严重程度;PD患者壳核两侧DAT结合力降低较为明显,与运动障碍程度有关[33]。18F-FP-CIT是目前应用最为广泛也是最有价值的PD显像剂。
在本次年会上,关于PD患者DAT显像的研究有4篇,其中3篇为18F-FP-CIT显像,1篇为11C-CFT显像。其中1篇研究[34]结果显示随年龄增长,PD患者18F-FP-CIT纹状体摄取下降呈非线性,并且比非PD患者纹状体摄取下降速度快7倍。
(3)关于递质类。芳香氨基酸脱羧酶(aromatic L-amino acid decarboxylase, AADC)是单胺类多巴胺合成最后一步所需的水解酶,18F-多巴(L-6-18F-fluoro-3,4-dihydroxyphenylalanine, 18F-DOPA)是AADC的底物,18F-DOPA的摄取可以反映AADC的活性[35],该显像剂与VMAT2和DAT显像剂不同,并不能计数神经元。
2.突触后显像剂。突触后显像剂没有突触前显像剂应用广泛,根据作用受体不同分为D2或D3类多巴胺受体显像剂,其显像与内源性多巴胺浓度有关。研究最多的D2类显像剂是11C-雷氯必利(raclopride),该显像剂主要结合在PD患者纹状体部位,表现为纹状体部位受体结合的上调。D2或D3类显像剂11C-4-丙基-9-羟基吩噁嗪(4-propyl-9-hydroxynaphthoxazine, PHNO)是更倾向于与D3受体结合,主要结合部位在黑质和苍白球。
3.其他类。靶向大麻素受体的18F-N-[(2S,3S)-3-(3-苯腈)-4-(4-乙氧基苯基)丁烷-2-基]-2-甲基-2-(5-甲基吡啶-2-基)氧丙酰胺{N-[(2S,3S)-3-(3-cyanophenyl)-4-(4-ethoxyphenyl)butan-2-yl]-2-methyl-2-(5-methylpyridin-2-yl)oxypropanamide, MK-9470}是具有高选择性和结合力的大麻素受体反向激动剂[36]。PD患者脑内乙酰胆碱酯酶水平降低,靶向乙酰胆碱酯酶受体的11C-甲基-4-丙酸哌啶(methyl-piperidin-4-yl-propionate, PMP)可用于检测体内乙酰胆碱酯酶的活性[37]。靶向腺苷A2A受体的显像剂11C-吡唑[4,3-e]-1,2,4-三唑[1,5-c]嘧啶{pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine, SCH442416}可以勾画脑中A2A受体分布:主要分布在纹状体、伏核和嗅结节[38]。靶向谷氨酸盐N-甲基-D-天门冬氨酸(N-methyl-D-aspartic acid, NMDA)受体的11C-N-(2-氯-5-甲基苯硫基)-N′-(3-甲基苯硫基)-N′-甲基胍[N-(2-chloro-5-methylthiophenyl)-N′-(3-methylthiophenyl)-N′-methylguanidine, CNS5161]是选择性NMDA受体拮抗剂[39]。靶向5-羟色胺受体的11C-3-氨基-4-(2-二甲氨基甲基-苯磺酰)苯甲腈[3-amino-4-(2-dimethylaminomethyl-phenylsufanyl)benzonitrile, DASB]对5-羟色胺转运体具有高选择性,主要分布于中脑,纹状体和丘脑[40]。
三、癫痫
癫痫是由于大脑神经元突发异常导致惊厥发作的一种慢性疾病。全世界约有65 000 000例癫痫患者,并以每年15 500例的速度增长,药物治疗对20%~40%的癫痫患者不起作用,这些患者需考虑手术治疗[41]。PET脑显像对癫痫的诊断和治疗具有重要意义,尤其对于手术治疗的患者,18F-FDG是癫痫的常规显像剂,然而其糖代谢低与海马硬化程度不能保持一致[42]。
1.γ-氨基丁酸(γ-aminobutyric acid, GABA)受体。GABA是中枢神经系统最重要的神经抑制递质,苯二氮䓬受体是GABA受体的调节点,氟马西尼是苯二氮䓬受体拮抗剂。基于这一机制,19世纪80年代,11C-氟马西尼(flumazenil, FMZ)被用于癫痫的研究,该显像剂可以检测对药物治疗不起作用的癫痫患者海马硬化这一特点[43]。由于11C半衰期短,18F-FMZ随后问世,其与11C-FMZ结构类似,药代动力学以及显像特点也类似,是目前癫痫诊断中应用最广泛也最有价值的特异性显像剂。
2.谷氨酸盐NMDA受体。谷氨酸盐是中枢神经系统主要兴奋性递质,在癫痫发作前与发作过程中短暂性释放,谷氨酸盐NMDA受体增多是癫痫发生的1个重要原因[44]。近年来NMDA受体显像剂的研究多数以失败告终,18F-GE-179能与NMDA离子通道上的苯环己哌啶结合,进而对该受体的激活状态进行显像[45]。研究[46]显示,未服用抗抑郁药的癫痫患者体内18F-GE-179的结合显著增高,服用抗抑郁药的癫痫患者体内18F-GE-179的结合却比健康人低,后续还需深入研究。
3.多药转运体。抗癫痫药物的抗药性可能是多药外排转运体(如P-糖蛋白)作用的结果[47]。维拉帕米(verapamil)是P-糖蛋白抑制剂,11C-verapamil脑摄取与血-脑屏障处P-糖蛋白活性有关。研究[48]显示,癫痫患者11C-verapamil涌入常数低,表明P-糖蛋白作用强。癫痫患者手术标本的体外病理结果显示,癫痫发作频率与海马体和全脑水平的P-糖蛋白活性呈正相关[49]。但是,P-糖蛋白过度激活与癫痫发作频率增加是否具有因果关系尚不能得出结论[50]。
四、脑肿瘤
原发性脑肿瘤患者的年发生率为0.028%,其中胶质瘤占30%~40%,且近一半为胶质母细胞瘤。目前,WHO将胶质瘤分为4个级别,Ⅰ级和Ⅱ级被视为低分级胶质瘤,而Ⅲ级与Ⅳ级被视为高分级胶质瘤[51]。脑肿瘤的诊断与分级对其治疗有重要指导意义,近年来多种特异性显像剂逐渐被应用。主要有:(1)氨基酸类。包括11C-甲基蛋氨酸(methionine, MET)[52]和18F-O-(2-氟代乙基)L-酪氨酸[O-(2-fluoroethyl)L-tyrosine, FET],近年来后者的应用正在增加。作为人工合成的氨基酸,18F-FET被肿瘤细胞摄取但不用于合成蛋白质,对脑肿瘤患者存活率具有评估价值[53]。本次年会关于脑肿瘤氨基酸类显像剂的论文共有6篇,其中5篇为18F-FET,1篇为11C-MET。(2)胆碱类。11C-胆碱或18F-胆碱的脑肿瘤摄取不受血-脑屏障影响,具有天然的显像优势,其在放疗前测定肿瘤体积方面较为准确[54],但容易出现假阳性或假阴性,且不能监测放疗效果[55]。(3)核苷酸类[如18F-脱氧胸腺嘧啶核苷(fluorothymidine, FLT)]。(4)乏氧类。具体包括18F-氟硝基咪唑(fluoromisonidazole, FMISO)[56],18F-氟子囊霉素阿糖胞苷(fluoroazomyin arabinoside, FAZA)[57],18F-氟赤硝基咪唑(fluoroerythronitromidazole, FETNIM)[58],60/61/62/64Cu-二乙酰-双(N4-甲基三氯甲基砜)[diacetyl-bis(N4-methylthiosemicarbazone), ATSM][59]。在本次年会中,有1篇研究[60]应用18F-FMISO来对脑转移病灶的放疗效果进行预测,结果显示18F-FMISO PET显像可以预测脑转移局部治疗效果。(5)乙酸类。研究[61]显示,11C-ACE可用于胶质瘤显像,但仍需更多研究加以证实。(6)表皮生长因子类。11C-PD153035是目前研究最成熟的表皮生长因子受体(epidermal growth factor receptor, EGFR)小分子显像剂[62],为了得到更好的显像质量,还研发了ML01、ML03、ML04、ML06、ML07、ML08等显像剂,其中18F-ML04体内生物分布、特异性最佳。此外,89Zr标记的ABT806单克隆抗体具有较长的半衰期(78.4 h),与抗体结合时间匹配,安全性和特异性均较强[63]。
五、转位蛋白(translocator protein, TSPO)显像剂
尽管中枢神经系统疾病的病理学进程各不相同,但神经炎性病变是该类疾病的共同病理途径。TSPO(相对分子质量1.8×104)是一类运输胆固醇和卟啉的线粒体膜蛋白,在正常脑组织中的表达微乎其微,但在中枢神经系统疾病中其表达量增加。TSPO PET显像剂在AD、PD等神经退行性疾病中均有广阔的应用前景。
目前运用最多的TSPO显像剂是N-[11C]甲基-N-(1-甲基丙基)-1-(2-氯苯基)异喹啉-3-氨甲酰{1-(2-ehlorophenyl)-N-[11C]methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide, 11C-PK11195}。尽管被认为是TSPO显像的'金标准',但该显像剂存在信噪比低、血-脑屏障通透性差、非特异性结合强等缺点[64]。具有更高结合力和特异性的二代TSPO显像剂应运而生,其中有代表性的是11C-甲基-N-(2-甲氧基卞基)-2-苯氧基-5-氨基吡啶[methyl-N-(2-methoxylbenzyl)-2-phenoxy-5-pyridinamine, PBR28][65]、18F-N,N-二乙基-2-(2-(4-(2-氟代乙氧基)苯基)-5,7-二甲基吡唑并[1,5-a]嘧啶-3-碱基)乙酰胺[N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide, DPA-714][66]、18F-GE-180[67]等,但该类显像剂存在1个问题,即结合力具有个体差异性[68],这限制了它们的应用。
在本次年会中,有3篇关于TSPO显像剂的论文。其中1篇显示,18F-DPA-714可用于监控胶质瘤小鼠模型对免疫疗法的反应[69];1篇应用11C-PBR28测量白质TSPO[70];还有1篇应用18F-GE-180对心肌梗死患者的心脑炎性反应进行显像,结果显示心肌梗死与心脑炎性病变有关,进而提示心肌缺血与认知减退有关[71]。
六、小结
综上,中枢神经系统PET显像剂研究取得的成果,可以大大提升人们对脑功能的认知。虽然中枢神经系统PET显像剂的种类繁多,但是研究仍不够深入。每种显像剂都各有优缺点,有时需多种显像剂协同显像,如何针对不同患者应用不同显像剂是需要学习和研究的地方。随着精准医疗理念的推广,PET显像作为分子影像技术的重要组成部分,其在中枢神经系统相关疾病的诊断中将发挥越来越重要的作用,相应显像剂的研发也必将成为研究热点。
利益冲突
利益冲突 无
参 考 文 献
[1]
Saint-AubertL, AlmkvistO, ChiotisK, et al. Regional tau deposition measured by [18F]THK5317 positron emission tomography is associated to cognition via glucose metabolism in Alzheimer′s disease[J]. Alzheimers Res Ther, 2016, 8(1): 38. DOI:10.1186/s13195-016-0204-z.
[2]
OssenkoppeleR, TolboomN, Foster-DingleyJC, et al. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET[J]. Eur J Nucl Med Mol Imaging, 2012, 39(6): 990-1000. DOI:10.1007/s00259-012-2102-3.
[3]
VillemagneVL, MulliganRS, PejoskaS, et al. Comparison of 11C-PiB and 18F-florbetaben for Aβ imaging in ageing and Alzheimer′s disease[J]. Eur J Nucl Med Mol Imaging, 2012, 39(6): 983-989. DOI:10.1007/s00259-012-2088-x.
[4]
WolkDA, ZhangZ, BoudharS, et al. Amyloid imaging in Alzheimer′s disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography[J]. J Neurol Neurosurg Psychiatry, 2012, 83(9): 923-926. DOI:10.1136/jnnp-2012-302548.
[5]
VandenbergheR, Van LaereK, IvanoiuA, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial[J]. Ann Neurol, 2010, 68(3): 319-329. DOI:10.1002/ana.22068.
[6]
RoweCC, VillemagneVL. Brain amyloid imaging[J]. J Nucl Med Technol, 2013, 41(1): 11-18. DOI:10.2967/jnumed.110.076315.
[7]
RoweCC, PejoskaS, MulliganRS, et al. Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for β-amyloid imaging in aging and dementia[J]. J Nucl Med, 2013, 54(6): 880-886. DOI:10.2967/jnumed.112.114785.
[8]
ParkJY, ByunBH, LimSM, et al. Direct comparison of [18F]FC119S and [11C]PiB of PET in Alzheimer′s disease, mild cognitive impairment and healthy control groups; an open-label, single-dose, parallel, evaluator-blind, investigator clinical trial[J]. J Nucl Med, 2016, 57Suppl 2: 19.
[9]
ShiK, GrimmerT, FÃпrsterS, et al. Amyloid imaging using 18F-FIBT PET: a pilot study[J]. J Nucl Med, 2016, 57 (Suppl 2): 460.
[10]
WhittingtonA, SharpD, GunnR. Spatiotemporal distribution of β-amyloid in Alzheimer′s Disease results from heterogeneous regional carrying capacities[J]. J Nucl Med, 2016, 57 (Suppl 2): 346.
[11]
OkamuraN, SuemotoT, FurumotoS, et al. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer′s disease[J]. J Neurosci, 2005, 25(47): 10857-10862. DOI:10.1523/JNEUROSCI.1738-05.2005.
[12]
MatsumuraK, OnoM, KimuraH, et al. 18F-labeled phenyldiazenyl benzothiazole for in vivo imaging of neurofibrillary tangles in Alzheimer′s disease brains[J]. ACS Med Chem Lett, 2011, 3(1): 58-62. DOI:10.1021/ml200230e.
[13]
Fodero-TavolettiMT, OkamuraN, FurumotoS, et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer′s disease[J]. Brain, 2011, 134(Pt 4): 1089-1100. DOI:10.1093/brain/awr038.
[14]
OkamuraN, FurumotoS, HaradaR, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease[J]. J Nucl Med, 2013, 54(8): 1420-1427. DOI:10.2967/jnumed.112.117341.
[15]
VillemagneVL, Fodero-TavolettiMT, MastersCL, et al. Tau imaging: early progress and future directions[J]. Lancet Neurol, 2015, 14(1): 114-124. DOI:10.1016/S1474-4422(14)70252-2.
[16]
OkamuraN, FurumotoS, HaradaR, et al. Characterization of 18F-THK-5351, a novel PET tracer for imaging tau pathology in Alzheimer′s disease[J]. Eur J Nucl Med Mol Imaging, 2014, 41: 5260.
[17]
MaruyamaM, ShimadaH, SuharaT, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls[J]. Neuron, 2013, 79(6): 1094-1108. DOI:10.1016/j.neuron.2013.07.037.
[18]
SzardeningAK, KolbHC, WaslshJC, et al. Imaging agents for detecting neurological dysfunction[P]. International Patent US 2012/0302755 A1, 2012.
[19]
CashionD.K, ChenG, KasiD, et al. Imaging agents for detecting neurological disorders[P]. International patent WO 2011/119565 A1, 2011.
[20]
ZhangW, ArteagaJ, CashionDK, et al. A highly selective and specific PET tracer for imaging of tau pathologies[J]. J Alzheimers Dis, 2012, 31(3): 601-612. DOI:10.3233/JAD-2012-120712.
[21]
XiaCF, ArteagaJ, ChenG, et al. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer′s disease[J]. Alzheimers Dement, 2013, 9(6): 666-676. DOI:10.1016/j.jalz.2012.11.008.
[22]
LohithT, BennacefI, ZengZ, et al. Preclinical evaluation and first-in-human dosimetry of [18F]MK-6240, a new PET tracer for in vivo quantification of human neurofibrillary tangles[J]. J Nucl Med, 2016, 57Suppl 2: 125.
[23]
GomezF, LinY.G, LiangQ, et al. Quantitative assessment of [18F]AV-1451 distribution in AD, PSP and PiD Post-Mortem Brain Tissue Sections relative to that of the anti-tau antibody AT8[J]. J Nucl Med, 2016, 57 (Suppl 2): 348.
[24]
CaryBP, BrooksAF, FawazMV, et al. Synthesis and evaluation of [18F]RAGER: a first generation small-molecule PET radioligand targeting the receptor for advanced glycation endproducts[J]. ACS Chem Neurosci, 2016, 7(3): 391-398. DOI:10.1021/acschemneuro.5b00319.
[25]
DeGradoTR, KempBJ, PandeyMK, et al. First PET imaging studies with 63Zn-zinc citrate in healthy human participants and patients with Alzheimer disease[J]. Mol Imaging, 2016,15: 1536012116673793. DOI:10.1177/1536012116673793.
[26]
BischofG, HammesJ, van EimerenT, et al. Differential contributions of amyloid and tau burden to neurodegeneration in Alzheimer′s disease: a multimodal in vivo PET study[J]. J Nucl Med, 2016, 57 (Suppl 2): 124.
[27]
NandhagopalR, KuramotoL, SchulzerM, et al. Longitudinal evolution of compensatory changes in striatal dopamine processing in Parkinson′s disease[J]. Brain, 2011, 134(Pt 11): 3290-3298. DOI:10.1093/brain/awr233.
[28]
BohnenNI, AlbinRL, KoeppeRA, et al. Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease[J]. J Cereb Blood Flow Metab, 2006, 26(9): 1198-1212. DOI:10.1038/sj.jcbfm.9600276.
[29]
GoswamiR, PondeDE, KungMP, et al. Fluoroalkyl derivatives of dihydrotetrabenazine as positron emission tomography imaging agents targeting vesicular monoamine transporters[J]. Nucl Med Biol, 2006, 33(6): 685-694. DOI:10.1016/j.nucmedbio.2006.05.006.
[30]
OkamuraN, VillemagneVL, DragoJ, et al. In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with 18F-AV-133[J]. J Nucl Med, 2010, 51(2): 223-228. DOI:10.2967/jnumed.109.070094.
[31]
BrooksDJ. Molecular imaging of dopamine transporters[J]. Ageing Res Rev, 2016, 30: 114-121. DOI:10.1016/j.arr.2015.12.009.
[32]
BrooksDJ. Technology insight: imaging neurodegeneration in Parkinson′s disease[J]. Nat Clin Pract Neurol, 2008, 4(5): 267-277. DOI:10.1038/ncpneuro0773.
[33]
KazumataK, DhawanV, ChalyT, et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET[J]. J Nucl Med, 1998, 39(9): 1521-1530.
[34]
SungC, KinJS, OhM, et al. Longitudinal decline of striatal subregional F-18 FP-CIT uptake in Parkinson′s disease[J]. J Nucl Med, 2016, 57 (Suppl 2): 69.
[35]
CropleyVL, FujitaM, Bara-JimenezW, et al. Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA[J]. Psychiatry Res, 2008, 163(2): 171-182. DOI:10.1016/j.pscychresns.2007.11.003.
[36]
Van LaereK, CasteelsC, LunskensS, et al. Regional changes in type 1 cannabinoid receptor availability in Parkinson′s disease in vivo[J]. Neurobiol Aging, 2012, 33(3): 620.e1-8. DOI:10.1016/j.neurobiolaging.2011.02.009.
[37]
KotagalV, AlbinRL, MüllerML, et al. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease[J]. Ann Neurol, 2012, 71(4): 560-568. DOI:10.1002/ana.22691.
[38]
RamlackhansinghAF, BoseSK, AhmedI, et al. Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease[J]. Neurology, 2011, 76(21): 1811-1816. DOI:10.1212/WNL.0b013e31821ccce4.
[39]
AhmedI, BoseSK, PaveseN, et al. Glutamate NMDA receptor dysregulation in Parkinson′s disease with dyskinesias[J]. Brain, 2011, 134(Pt 4): 979-986. DOI:10.1093/brain/awr028.
[40]
PaveseN, MooreRY, ScherflerC, et al. In vivo assessment of brain monoamine systems in parkin gene carriers: a PET study[J]. Exp Neurol, 2010, 222(1): 120-124. DOI:10.1016/j.expneurol.2009.12.021.
[41]
KwanP, BrodieMJ. Early identification of refractory epilepsy[J]. N Engl J Med, 2000, 342(5): 314-319. DOI:10.1056/NEJM200002033420503.
[42]
NooraineJ, IyerRB, RaghavendraS. Ictal PET in presurgical workup of refractory extratemporal epilepsy[J]. Ann Indian Acad Neurol, 2013, 16(4): 676-677. DOI:10.4103/0972-2327.120475.
[43]
LittonJE, NeimanJ, PauliS, et al. PET analysis of [11C]flumazenil binding to benzodiazepine receptors in chronic alcohol-dependent men and healthy controls[J]. Psychiatry Res, 1993, 50(1): 1-13. DOI:10.1016/0925-4927(93)90019-E.
[44]
StasheffSF, AndersonWW, ClarkS, et al. NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model[J]. Science, 1989, 245(4918): 648-651. DOI:10.1126/science.2569762.
[45]
McGinnityCJ, HammersA, Riaño BarrosDA, et al. Initial evaluation of 18F-GE-179, a putative PET Tracer for activated N-methyl D-aspartate receptors[J]. J Nucl Med, 2014, 55(3): 423-430. DOI:10.2967/jnumed.113.130641.
[46]
McGinnityCJ, KoeppMJ, HammersA, et al. NMDA receptor binding in focal epilepsies[J]. J Neurol Neurosurg Psychiatry, 2015, 86(10): 1150-1157. DOI:10.1136/jnnp-2014-309897.
[47]
FeldmannM, KoeppM. P-glycoprotein imaging in temporal lobe epilepsy: in vivo PET experiments with the Pgp substrate [11C]-verapamil[J]. Epilepsia, 2012, 53Suppl 6: 60-63. DOI:10.1111/j.1528-1167.2012.03704.x.
[48]
LangerO, BauerM, HammersA, et al. Pharmacoresistance in epilepsy: a pilot PET study with the P-glycoprotein substrate R-[11C]verapamil[J]. Epilepsia, 2007, 48(9): 1774-1784. DOI:10.1111/j.1528-1167.2007.01116.x
[49]
ShinJW, ChuK, ShinSA, et al. Clinical applications of simultaneous PET/MR imaging using (R)-[11C]-verapamil with cyclosporin a: preliminary results on a surrogate marker of drug-resistant epilepsy[J]. AJNR Am J Neuroradiol, 2016, 37(4): 600-606. DOI:10.3174/ajnr.A4566.
[50]
GidalBE. P-glycoprotein expression and pharmacoresistant epilepsy: cause or consequence?[J]. Epilepsy Curr, 2014, 14(3): 136-138. DOI:10.5698/1535-7597-14.3.136.
[51]
LouisDN, OhgakiH, WiestlerOD, et al. The 2007 WHO classification of tumours of the central nervous system[J]. Acta Neuropathol, 2007, 114(2): 97-109. DOI:10.1007/s00401-007-0243-4.
[52]
邵虹,TrampalC,吴靖川. 11C-蛋氨酸PET显像诊断胶质瘤的价值[J].中华核医学杂志,2003, 23 (2): 75-76. DOI:10.3760/cma.j.issn.2095-2848.2003.02.003.
ShaoH, TrampalC, WuJC. The diagnostic value of 11C-methionine PET scan in differentiating and grading gliomas[J]. Chin J Nucl Med, 2003, 23(2): 75-76. DOI:10.3760/cma.j.issn.2095-2848.2003.02.003.
[53]
SweeneyR, PolatB, SamnickS, et al. O-(2-[18F]fluoroethyl)-L-tyrosine uptake is an independent prognostic determinant in patients with glioma referred for radiation therapy[J]. Ann Nucl Med, 2014, 28(2): 154-162. DOI:10.1007/s12149-013-0792-7.
[54]
LiFM, NieQ, WangRM, et al. 11C-CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas[J]. Nucl Med Biol, 2012, 39(3): 437-442. DOI:10.1016/j.nucmedbio.2011.10.003.
[55]
于雷,王莹莹,胡祥华,等. 11C-MET PET/CT在高级别脑胶质瘤适形放疗方案制定中的价值[J].中华核医学与分子影像杂志,2015, 35(2): 102-107. DOI:10.3760/cma.j.issn.2095-2848.2015.02.006.
YuL, WangYY, HuXH, et al. Value of 11C-MET PET/CT in determinating conformal radiotherapeutic planning for high-grade gliomas[J]. Chin J Nucl Med Mol Imaging, 2015, 35(2): 102-107. DOI:10.3760/cma.j.issn.2095-2848.2015.02.006.
[56]
HirataK, TerasakaS, ShigaT, et al. 18F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas[J]. Eur J Nucl Med Mol Imaging, 2012, 39(5): 760-770. DOI:10.1007/s00259-011-2037-0.
[57]
KumarP, StypinskiD, XiaH, et al. Fluoroazomycin arabinoside (FAZA): synthesis, 2H and 3H-labelling and preliminary biological evaluation of a novel 2-nitroimidazole marker of tissue hypoxia[J]. J Label Comp Radiopharm, 2015, 42(1): 3-16. DOI:10.1007/s00259-011-2037-0.
[58]
YangDJ, WallaceS, CherifA, et al. Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia[J]. Radiology, 1995, 194(3): 795-800. DOI:10.1148/radiology.194.3.7862981.
[59]
FujibayashiY, TaniuchiH, YonekuraY, et al. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential[J]. J Nucl Med, 1997, 38(7): 1155-1160.
[60]
ToyonagaT, MoriT, ManabeO, et al. 18F-fluoromisonidazole uptake in metastatic brain lesions may predict time-to-progression after radiation therapy[J]. J Nucl Med, 2016, 57 (Suppl 2): 180.
[61]
YamamotoY, NishiyamaY, KimuraN, et al. 11C-acetate PET in the evaluation of brain glioma: comparison with 11C-methionine and 18F-FDG-PET[J]. Mol Imaging Biol, 2008, 10(5): 281-287. DOI:10.1007/s11307-008-0152-5.
[62]
SunJ, CaiL, ZhangK, et al. A pilot study on EGFR-targeted molecular imaging of PET/CT With 11C-PD153035 in human gliomas[J]. Clin Nucl Med, 2014, 39(1): e20-26. DOI:10.1097/RLU.0b013e3182a23b73.
[63]
张慧玮,管一晖.以表皮生长因子受体为靶点的脑肿瘤分子显像剂研究进展[J].肿瘤影像学,2016, 25(3): 209-212.
ZhangHW, GuanYH. Progress on molecular imaging agents targeting epidermal growth factor receptor in brain tumors[J]. Oncoradiology, 2016, 25(3): 209-212.
[64]
ShahF, HumeSP, PikeVW, et al. Synthesis of the enantiomers of [N-methyl-11C]PK 11195 and comparison of their behaviours as radioligands for PK binding sites in rats[J]. Nucl Med Biol, 1994, 21(4): 573-581. DOI:10.1016/0969-8051(94)90022-1.
[65]
KreislWC, FujitaM, FujimuraY, et al. Comparison of [11C]-(R)-PK11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker[J]. Neuroimage, 2010, 49(4): 2924-2932. DOI:10.1016/j.neuroimage.2009.11.056.
[66]
ArlicotN, VercouillieJ, RibeiroMJ, et al. Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation[J]. Nucl Med Biol, 2012, 39(4): 570-578. DOI:10.1016/j.nucmedbio.2011.10.012.
[67]
DickensAM, VainioS, MarjamäkiP, et al. Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers 11C-(R)-PK11195 and 18F-GE-180[J]. J Nucl Med, 2014, 55(3): 466-472. DOI:10.2967/jnumed.113.125625.
[68]
OwenDR, GunnRN, RabinerEA, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands[J]. J Nucl Med, 2011, 52(1): 24-32. DOI:10.2967/jnumed.110.079459.
[69]
IshibashiM, WatabeT, KanaiY, et al. Monitoring neuroinflammatory response to WT1 immunotherapy in glioma: 18F-DPA-714 and 11C-Methionine PET study with MR in mouse model[J]. J Nucl Med, 2016, 57 (Suppl 2): 345.
[70]
FennellE, ZoghbiS, PhamD, et al. Measurement of translocator protein in white matter using [11C]PBR28[J]. J Nucl Med, 2016, 57 (Suppl 2): 402.
[71]
HupeHC, ThackerayJ, PostemaJ, et al. Myocardial infarction is associated with neuroinflammation—a systemic analysis using TSPO-targeted molecular imaging[J]. J Nucl Med, 2016, 57 (Suppl 2): 404.
《中华核医学与分子影像杂志》
唯一官方微信平台