R语言基础绘图函数散点图~跟着Nature Communications学画图~Figure1
今天继续 跟着Nature Communications学画图系列第二篇。学习R语言基础绘图函数画散点图。
对应的 Nature Communications 的论文是 Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments
这篇论文数据分析和可视化的部分用到的数据和代码全部放到了github上 https://github.com/karkman/crassphage_project
非常好的R语言学习素材。
今天学习Figure1中被红色框线圈住的散点图
第一部分先收一下上一篇文章的尾
跟着Nature Communications学画图~Figure1~基础绘图函数箱线图
这篇文章中有人留言说 和原图不是很像,因为配色没有按照论文中提供的代码来。下面是完全重复论文中的代码
cols <- c('#E69F00', '#56B4E9', '#009E73')
boxplot(log10(rel_crAss)~country,data=HMP,col=cols,
axes=F,xlab=NULL,ylab=NULL,
horizontal = T)
axis(2,at=c(1,2,3),labels=c('China', 'Europe', 'US'),las=1)
title('a',adj=0,line=0)
第二部分 基础绘图函数散点图
读入数据
HMP<-read.table('data/HMP.txt')
最基本的散点图
plot(rel_res~rel_crAss,data=HMP)
画图用plot()
函数,需要指定画图用到的变量y和x,还有画图用到的数据data
原始代码分别对 rel_res 和 rel_crAss取了log10
plot(log10(rel_res)~log10(rel_crAss),data=HMP)
取log10以后可以看到散点分布的更加均匀了。
接下来就是对图进行美化了
按照国家分组填充颜色
cols <- c('#E69F00', '#56B4E9', '#009E73', '#F0E442', '#0072B2', '#D55E00', '#CC79A7')
plot(log10(rel_res)~log10(rel_crAss), data=HMP,
bg=cols[as.factor(HMP$country)],pch=21)
更改点的大小
plot(log10(rel_res)~log10(rel_crAss), data=HMP, bg=cols[as.factor(HMP$country)],pch=21,cex=2)
更改x轴和y轴的标签
plot(log10(rel_res)~log10(rel_crAss), data=HMP, bg=cols[as.factor(HMP$country)], pch=21,
ylab = 'Normalized ARG abundance (log10)',
xlab='Normalized crAssphage abundance (log10)', cex=2)
更改坐标轴的范围
plot(log10(rel_res)~log10(rel_crAss), data=HMP, bg=cols[as.factor(HMP$country)], pch=21, ylab = 'Normalized ARG abundance (log10)', xlab='Normalized crAssphage abundance (log10)', cex=2, ylim=c(2.5, 4.5))
接下来将箱线图和散点图按照上下拼接到一起,用到的是par(fig=c(a,b,c,d))
,这里需要满足 a<b,c<d
具体可以参考链接https://blog.csdn.net/qingchongxinshuru/article/details/52004182
par(fig=c(0,1,0,0.75))
plot(log10(rel_res)~log10(rel_crAss), data=HMP,
bg=cols[as.factor(HMP$country)], pch=21,
ylab = 'Normalized ARG abundance (log10)',
xlab='Normalized crAssphage abundance (log10)',
cex=2,
ylim=c(2.5, 4.5))
par(fig=c(0,1,0.5,1),new=T)
boxplot(log10(rel_crAss)~country,data=HMP,col=cols,
axes=F,xlab=NULL,ylab=NULL,
horizontal = T)
axis(2,at=c(1,2,3),labels=c('China', 'Europe', 'US'),las=1)
title('a',adj=0,line=0)
欢迎大家关注我的公众号
小明的数据分析笔记本
赞 (0)