改进的LSTM方法在冷水机组传感器故障检测中的应用

征稿通知

第四届轨道交通电气与信息技术国际学术会议

阅读征文通知,请戳上面标题  ▲

联合主办

中国电工技术学会

北京交通大学轨道交通控制与安全国家重点实验室

联合承办

中国电工技术学会轨道交通电气设备技术专委会

国家高速列车技术创新中心

《电气技术》杂志社

会议日期/地点

2019年10月25-27日/山东青岛

摘要

天津大学电气自动化与信息工程学院的研究人员李冬辉、尹海燕、郑博文、刘玲玲,在2019年第11期《电工技术学报》上撰文,针对目前国内外对于冷水机组传感器偏差故障检测效果不理想的问题,结合长短期记忆网络(LSTM)适用于处理高维、强耦合、高度时间相关性数据的特点,该文提出一种基于改进LSTM的深度学习方法,用于冷水机组传感器偏差故障检测。现场采集风冷冷水机组传感器数据,用于训练改进的LSTM。

通过实验分析得出,不同传感器检测效率不同。将该文所提方法的检测结果与自动编码器(Autoencoder)、主元分析法(PCA)、标准的LSTM三种方法的检测结果进行比较,得出该文所提方法在冷水机组传感器偏差故障检测中检测效率明显优于其他三种方法;并且针对同一传感器相同大小、不同正负的偏差故障,所提方法的检测效率具有更好的对称性。最后证明该文所提的改进LSTM方法具有良好的泛化性。

冷水机组是制冷空调系统的核心设备,冷水机组传感器的故障检测及诊断对于保证制冷空调系统正常运行具有重要意义。近些年,学者们针对空调传感器的故障检测及诊断问题进行了诸多研究。

文献[1]提出采用主元分析法(Principal Component Analysis, PCA)对空调传感器进行故障诊断,通过对温度、湿度传感器的偏差故障进行仿真,证明了所提方法具有很好的诊断效果。但PCA应用的前提是假设过程为线性的,而空调系统多变量数据间具有非线性关系,使得PCA在处理空调传感器故障问题上受到了限制。

针对PCA存在的问题,文献[2]提出采用核主元分析法(Kernel Principal Component Analysis, KPCA)解决空调传感器的故障诊断问题,并证明KPCA取得的效果优于PCA。文献[3-4]分别利用位域运动误差观测器和解析冗余的方法进行齿轮断齿故障诊断和整流器传感器故障诊断。

在KPCA的基础上,文献[5]提出采用二分法进行核参数优化,进而解决核函数参数选择主观性较大的问题,从而获得了改进KPCA的故障检测方法。文献[6]发现,基于PCA的空调传感器故障诊断效率与测得的数据质量有关,对此,文献[7-8]分别提出采用小波变换法和自适应主元分析法剔除训练矩阵中的异常数,提高数据质量,并分别取得了优于PCA的效果。

然而PCA以及改进的PCA在用于空调传感器故障诊断中存在以下不足:

  • ①PCA以及改进的PCA需要进行降维处理,在此过程中,会丢失一部分数据,不能保证数据的完整性,同时被舍弃的贡献率小的主成分往往可能含有对样本差异的重要信息;

  • ②利用PCA以及改进的PCA进行传感器故障诊断需要两步才能完成,首先要根据平方预测误差(Squared Prediction Error, SPE)判断系统是否存在故障传感器,然后需要对系统中各个被监测的传感器读数进行重构,才能定位发生故障的传感器,若系统中包含多个传感器,则需要做大量多余的工作,费时费力;

  • ③在选取主元时,没有有效的准则,主观性较大;

  • ④PCA以及改进的PCA需要计算协方差矩阵,计算量大,不适用于含有多个需要诊断的传感器的空调系统。

长短期记忆网络(Long Short-Term Memory,LSTM)是由SeppHochreiter和JürgenSchmidhuber于1997年针对循环神经网络(Recurrent Neural Network, RNN)在处理非线性时间问题上存在梯度爆炸和梯度消失的问题[9]提出的一种时间递归神经网络,由于网络自身结构的特点,被广泛应用于处理和预测高度时间相关、强耦合的事件。

文献[10]将LSTM用于非结构化文本的故障分类。文献[11]利用LSTM进行航空发动机的故障检测,从而保证发动机正常运行。针对游客出行,为了使其制定适当的出行路线,文献[12]提出采用LSTM进行短期交通状况预测。文献[13]利用LSTM进行风电场发电功率的超短期预测,并证明预测精度高于人工神经网络。

结合LSTM的特点以及冷水机组传感器读数的规律,本文提出一种改进LSTM的深度学习方法用于冷水机组传感器偏差故障诊断。该方法将传感器故障检测看作分类问题,不同故障传感器对应于不同的类别,并将传感器故障检测、诊断合二为一,可以直接定位故障传感器。最后利用风冷冷水机组实验平台采集数据,通过实验,证明本文所提方法的有效性。

图5  压缩式制冷系统耦合特性

图6  故障诊断流程

图7  风冷冷水机组实验平台

结论

为了提高冷水机组传感器偏差故障的检测效率,本文结合LSTM在处理强耦合、高度时间相关性数据的优势,提出一种改进的LSTM,用于冷水机组传感器偏差故障的检测,并通过采集数据进行实验分析,最后将本文所提方法的检测结果与自动编码器、PCA、标准的LSTM三种方法的检测结果进行比较,得出以下结论:

  • 1)本文所提出的改进LSTM,对于不同类型的传感器,整体检测效率不同,就本文而言,对于压力类传感器的检测效率要好于其他两类传感器。

  • 2)对于同一传感器相同大小、相同正负的偏差故障,本文所提方法的检测效率高于自动编码器、PCA、标准的LSTM三种方法,尤其对于阈值较小的偏差故障,本文所提方法的检测效果明显优于其他三种方法,在其他三种方法几乎完全失效的情况下,本文所提方法仍能保持较好的检测效率。

  • 3)对于同一传感器相同大小、不同正负的偏差故障,本文所提方法的检测效率略有不同,能保持良好的对称性,而其他三种方法均不能保持良好的对称性。

  • 4)本文所提方法具有良好的泛化能力,对于未经过训练的故障,本文方法仍保持较高的检测效率。

  • 5)自动编码器和PCA进行冷水机组传感器故障检测时,都需要对数据进行降维处理,这就必然导致原始数据的丢失,相对而言,改进的LSTM是对原始数据直接处理,保持数据的真实性以及完整性。

综上所述,本文将冷水机组传感器故障检测问题当作分类问题处理,取得了较理想的效果,为今后传感器故障的诊断与重构的研究提供了新思路。但本文在搭建LSTM选取参数时,采取手动遍历的方式,缺少理论依据,并且浪费时间。后续可以进一步研究如何更有效、更有依据地选取LSTM全连接层数以及相关的参数,解决本文所提的问题。

(0)

相关推荐