让机器像人一样思考!日本科学家开发可自主走迷宫的机器人
撰文:朱哼哼
编审:王新凯
排版:李雪薇
相比于阿尔法狗,2008 年安德鲁·斯坦顿编导、皮克斯动画工作室制作的电影《机器总动员》中,可以像人类一样独立思考甚至自由恋爱的机器人瓦力和伊娃,或许更符合人们对人工智能的期待。
图 | 瓦力(来源:disney)
与谷歌的阿尔法狗不同,这个机器人无法看到环境、无法感知环境也没有经过任何走迷宫的学习,而完全是依赖干扰信号就可以完成走迷宫的目标。
视频 | 一个机器人被放置在有障碍物的场地上,并奔向目标(来源:AIP)
所谓人工智能,也就是可以智能工作的机器。例如,阿尔法狗可以自主下棋并轻易击败人类围棋冠军。那么,阿尔法狗算是人工智能吗?
显然还不能够,虽然它可以学习无数的棋谱,进行无数的训练,轻易战胜所有人类围棋选手。但是,人类想要战胜它也很简单,就如网友评价那样,直接拔掉它的电源就好了。毕竟它除了下围棋,其他啥也不会。不像人类,在面对生命危险时会做出反抗或逃跑。
而之所以目前的人工智能都无法像人类一样独立学习和思考,很大程度上与目前人们开发人工智能的模式有关。
(来源:Pixabay)
在现实世界中,人类不仅要面对还要处理种种不确定性事件。比如你在达到一个目标前,受到诸多困难,你需要排除万难;你在驾车时,前方冲出一辆车,你需要转动方向盘避免撞车;你在处理一项任务时,突然接到另一项重要任务,你需要随机应变。一个智能的电脑程序不仅能够按照既定计划完成任务,还能确保在不确定事件发生的情况下完成任务。
所以,真正的人工智能,必须能够不断感知周围环境的变化,并对此做出反应,适时改变和调整自己的行动,以期出色完成任务。
而所谓的物理储备池计算,就是将给定物理系统(例如光子系统、神经系统、机械系统等)中的内在非线性动力学用作计算资源储存。储备池计算的一个神奇之处在于,中间层的储备池矩阵是随机生成的且生成后就保持不变,真正需要训练的只有输出层,这也使它比传统的方法快很多。
图 | 物理储备池实验系统示意图(来源:AIP)
为了在活的神经元中进行物理储备池计算,研究人员开发了一个闭环系统来从自发活跃的神经元培养物中产生相干信号,操作移动机器人。神经元培养物在微电极阵列上生长,以方便细胞外信号测量。尖峰事件与半高斯核进行卷积以平滑信号,并将信号加权用于 FORCE 学习的输出。
而反馈信号由光活性笼状谷氨酸和 Rubi- 谷氨酸产生,使用 473 nm 蓝光照射会打破笼装结构,激活神经元细胞。在 FORCE 学习中通过 RLS 算法调整权重,使输出信号变成目标常数信号。输出信号与目标之间的偏差用于机器人控制,如果误差为 0 则机器人向前移动,否则要么左转、要么右转。
这一研究结果表明,通过向混沌的具体系统发送干扰信号,而无需任何额外的学习就可以生成目标导向行为,机器人无需感知环境,完全依赖电刺激也能出色的完成迷宫任务。
对于这一研究成果 Hirokazu Takahashi 教授表示,“物理储备池计算可以帮助我们更好地了解人类大脑的工作机制,有利于创造像人类一样思考的人工智能机器人。”
https://aip.scitation.org/doi/full/10.1063/5.0064771
https://www.eurekalert.org/news-releases/932479
点这里关注我👇记得标星~
热门视频推荐