Keras之DNN:利用DNN算法【Input(8)→12+8(relu)→O(sigmoid)】利用糖尿病数据集训练、评估模型(利用糖尿病数据集中的八个参数特征预测一个0或1结果)
Keras之DNN:利用DNN算法【Input(8)→12+8(relu)→O(sigmoid)】利用糖尿病数据集训练、评估模型(利用糖尿病数据集中的八个参数特征预测一个0或1结果)
输出结果
设计思路
实现代码
后期更新……
相关推荐
-
一文上手OpenCV DNN(实现图像分类)
一文上手OpenCV DNN 1.DNN模块介绍 OpenCV的DNN模块是在OpenCV3.3合并到OpenCV release中的,它最早是在扩展模块中的,它可以导入caffe.tensorflo ...
-
【连载16】GoogLeNet Inception V1
公众号后台回复"python",立刻领取100本机器学习必备Python电子书 GoogLeNet是由google的Christian Szegedy等人在2014年的论文< ...
-
深度学习六十问!一位算法工程师经历30+场CV面试后总结的常见问题合集下篇(含答案)
作者丨灯会 来源丨极市平台 编辑丨极市平台 极市导读 本篇主要包含数据类问题.正则化.激活函数与梯度以及回归.SVM支持向量机.K-Means均值以及机器学习相关常考内容等相关面试经验. >&g ...
-
【Keras速成】Keras图像分类从模型自定义到测试
这是给大家准备的Keras速成例子 杨照璐 计算机视觉.深度学习方向从业者 作者 | 杨照璐(微信号lwyzl0821) 编辑 | 言有三 这一次我们讲讲keras这个简单.流行的深度学习框架,一个图 ...
-
「PyTorch自然语言处理系列」3. 神经网络的基本组件(上)
数据与智能 226篇原创内容 公众号 来源 | Natural Language Processing with PyTorch 作者 | Rao,McMahan 译者 | Liangchu 校对 ...
-
【TensorFlow2.0】以后我们再也离不开Keras了?
TensorFlow2.0 Alpha版已经发布,在2.0中最重要的API或者说到处都出现的API是谁,那无疑是Keras.因此用过2.0的人都会吐槽全世界都是Keras.今天我们就来说说Keras这 ...
-
Keras之DNN:利用DNN【Input(8)→(12+8)(relu)→O(sigmoid)】模型实现预测新数据(利用糖尿病数据集的八个特征进行二分类预测
Keras之DNN:利用DNN[Input(8)→(12+8)(relu)→O(sigmoid)]模型实现预测新数据(利用糖尿病数据集的八个特征进行二分类预测 输出结果 [1.0, 0.0, 1.0, ...
-
Keras之MLPR:利用MLPR算法(3to1【窗口法】+【Input(3)→(12+8)(relu)→O(mse)】)实现根据历史航空旅客数量数据集(时间序列数据)预测下月乘客数量问题
Keras之MLPR:利用MLPR算法(3to1[窗口法]+[Input(3)→(12+8)(relu)→O(mse)])实现根据历史航空旅客数量数据集(时间序列数据)预测下月乘客数量问题 输出结果 ...
-
Keras之MLP:利用MLP【Input(8)→(12)(relu)→O(sigmoid+二元交叉)】模型实现预测新数据(利用糖尿病数据集的八个特征实现二分类预测
Keras之MLP:利用MLP[Input(8)→(12)(relu)→O(sigmoid+二元交叉)]模型实现预测新数据(利用糖尿病数据集的八个特征实现二分类预测 输出结果 实现代码 # load ...
-
DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程
DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程 相关文章: DL之DNN优化技术:采用三种激活函数(si ...
-
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD】对Mnist数据集训练来理解过拟合现象
DL之DNN:利用MultiLayerNet模型[6*100+ReLU+SGD]对Mnist数据集训练来理解过拟合现象 导读 自定义少量的Mnist数据集,利用全连接神经网络MultiLayerNet ...
-
NLP之TM之LDA:利用LDA算法瞬时掌握文档的主题内容—利用希拉里邮件数据集训练LDA模型并对新文本进行主题分类
NLP之TM之LDA:利用LDA算法瞬时掌握文档的主题内容-利用希拉里邮件数据集训练LDA模型并对新文本进行主题分类 输出结果 设计思路 核心代码 lda = gensim.models.ldamod ...
-
DL之DNN优化技术:自定义MultiLayerNet【5*100+ReLU】对MNIST数据集训练进而比较三种权重初始值(Xavier参数初始化、He参数初始化)性能差异
DL之DNN优化技术:自定义MultiLayerNet[5*100+ReLU]对MNIST数据集训练进而比较三种权重初始值(Xavier参数初始化.He参数初始化)性能差异 导读 #思路:观察不同的权 ...
-
DL之DNN:自定义MultiLayerNet【6*100+ReLU,SGD】对MNIST数据集训练进而比较【多个超参数组合最优化】性能
DL之DNN:自定义MultiLayerNet[6*100+ReLU,SGD]对MNIST数据集训练进而比较[多个超参数组合最优化]性能 输出结果 val_acc:0.14 | lr:4.370890 ...
-
DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)
DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化) 相关文章 DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数 ...