OpenCV探索之路(五):图片缩放和图像金字塔

对图像进行缩放的最简单方法当然是调用resize函数啦!

resize函数可以将源图像精确地转化为指定尺寸的目标图像。

要缩小图像,一般推荐使用CV_INETR_AREA来插值;若要放大图像,推荐使用CV_INTER_LINEAR。

现在说说调用方式

第一种,规定好你要图片的尺寸,就是你填入你要的图片的长和高。

#include<opencv2\opencv.hpp>
#include<opencv2\highgui\highgui.hpp>

using namespace std;
using namespace cv;

//图片的缩小与放大
int main()
{
Mat img = imread("lol5.jpg");
imshow("原始图", img);

Mat dst = Mat::zeros(512, 512, CV_8UC3); //我要转化为512*512大小的
resize(img, dst, dst.size());

imshow("尺寸调整之后", dst);

waitKey(0);

}

第二种,填入你要缩小或者放大的比率。

#include<opencv2\opencv.hpp>
#include<opencv2\highgui\highgui.hpp>

using namespace std;
using namespace cv;

//图片的缩小与放大
int main()
{
Mat img = imread("lol5.jpg");
imshow("原始图", img);

Mat dst;
resize(img, dst, Size(),0.5,0.5);//我长宽都变为原来的0.5倍

imshow("尺寸调整之后", dst);

waitKey(0);

}

接下来说说图像金字塔

说白了,图像金字塔就是用来进行图像缩放的,干的事情跟resize函数没两样,那我们还需要学它吗?我觉得有必要的额,因为在学习卷积神经网络中会遇到这个名词,所以都学一学吧,搞图形都绕不过他!

说说什么是图像金字塔。

其实非常好理解,如上图所示,我们将一层层的图像比喻为金字塔,层级越高,则图像尺寸越小,分辨率越低。

两种类型的金字塔:

  • 高斯金字塔:用于下采样,主要的图像金字塔;
  • 拉普拉斯金字塔:用于重建图像,也就是预测残差(我的理解是,因为小图像放大,必须插入一些像素值,那这些像素值是什么才合适呢,那就得进行根据周围像素进行预测),对图像进行最大程度的还原。比如一幅小图像重建为一幅大图像,

图像金字塔有两个高频出现的名词:上采样和下采样。现在说说他们俩。

  • 上采样:就是图片放大(所谓上嘛,就是变大),使用PryUp函数
  • 下采样:就是图片缩小(所谓下嘛,就是变小),使用PryDown函数

下采样将步骤:

  1. 对图像进行高斯内核卷积
  2. 将所有偶数行和列去除

下采样就是图像压缩,会丢失图像信息。

上采样步骤:

  1. 将图像在每个方向放大为原来的两倍,新增的行和列用0填充;
  2. 使用先前同样的内核(乘以4)与放大后的图像卷积,获得新增像素的近似值。

上、下采样都存在一个严重的问题,那就是图像变模糊了,因为缩放的过程中发生了信息丢失的问题。要解决这个问题,就得看拉普拉斯金字塔了。

下面给出OpenCV中pryUp和pryDown的用法。

#include<opencv2\opencv.hpp>
#include<opencv2\highgui\highgui.hpp>

using namespace std;
using namespace cv;

//图像金字塔
int main()
{
Mat img = imread("lol8.jpg");
imshow("原始图", img);

Mat dst,dst2;
pyrUp(img, dst, Size(img.cols*2, img.rows*2)); //放大一倍
pyrDown(img, dst2, Size(img.cols * 0.5, img.rows * 0.5)); //缩小为原来的一半
imshow("尺寸放大之后", dst);
imshow("尺寸缩小之后", dst2);

waitKey(0);

}

显然,无论是放大还是缩小,图像都变得模糊了,这就是他的致命缺点。

个人认为,要做缩放就用resize函数吧,毕竟方便太多而且图像不会变模糊!

(0)

相关推荐

  • OpenCV学习28

    查找轮廓 什么是轮廓:一个轮廓是由图像中的一系列点组成的,也就是图像中的一条曲线.在OpenCV中一般用序列来存储轮廓信息.序列中的每个元素是曲线中每个点的位置. 关于序列:序列是内存存储器中可以存储 ...

  • python+opencv图像处理(二)

    python+opencv图像处理(二) ----图像变换 自然界中有很多的颜色,红红的花,绿绿的草,蓝蓝的天,白白的云,多姿多彩的世界,美轮美奂的图像. 通过手机,照相机就可以定格每一个美的瞬间. ...

  • python+opencv图像处理(十一)

    图像镜像 图像的镜像指的是将图像以某条线为中心进行镜像对换. 图像的镜像根据翻转的方向可分为水平镜像翻转.垂直镜像翻转和对角镜像翻转3种. 水平镜像翻转指的是将图像以y轴为中心进行左右镜像对换. 垂直 ...

  • python+opencv图像处理(十二)

    图像仿射变换和透视变换 天晴了...... 1.仿射变换 图像的仿射变换就是图像的旋转加上拉升,说直白点,就是把矩形变成平行四边形. 要把矩形变成平行四边行,只需要拉伸其四个角点就行了,事实上,只需要 ...

  • python+opencv图像处理(十)

    图像旋转 本篇主要利用opencv的转换函数warpAffine实现图像的平移和旋转. 1.图像旋转 图像旋转即是根据某个中心点进行旋转. 要进行旋转,要找到中心点,要知道旋转角度,opencv提供了 ...

  • 基于Opencv的图像单应性转换实战

    重磅干货,第一时间送达 同形转换 我们所常见的都是以这样的方式来处理图像:检测斑点,分割感兴趣的对象等.我们如何将它们从一种形式转换为另一种形式来处理这些图像呢?通过单应矩阵快速转换图像可以实现这个需 ...

  • (7条消息) OpenCV绘制文字、图形

    文章目录 一.文字putText 二.线line 三.矩形rectangle 四.圆circle 五.椭圆ellipse() color问题:图形的颜色会受到图像通道数的影响.如图像是灰度图,那么图形 ...

  • 【从零学习OpenCV 4】两图像间的像素操作

    重磅干货,第一时间送达 经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍<从零学习OpenCV 4>.为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社沟通 ...

  • OpenCV基础知识入门

    本文旨在让你快速入门opencv. OpenCV OpenCV是计算机视觉中最受欢迎的库,最初由intel使用C和C ++进行开发的,现在也可以在python中使用.该库是一个跨平台的开源库,是免费使 ...

  • Python+opencv 图像处理(五)

        灰度反转 "你说的黑是什么黑......"有一首歌的歌词是这样的. 在图像中,黑是什么? 很简单,就是0嘛. 因为在数字图像里,用0表示黑. 那么,"你说的白是什 ...

  • opencv3/C++轮廓的提取与筛选

        版权声明:本文为博主原创文章. https://blog.csdn.net/akadiao/article/details/78843773 <div class="markd ...