【中考复习】正方形其一:正方形与对称、旋转
正方形既是轴对称图形,也是中心对称图形,关于对称可以考察对称的基本性质,也可以有关于构造对称,而涉及到计算的,无非就是勾股或者三角函数.且看相关例子:
图形的基本性质
求线段长度——勾股定理
对称的性质——对称点连线被对称轴垂直且平分
对称的性质——对称点连线被对称轴垂直且平分
构造对称——将军饮马问题
构造对称——不一样的将军饮马
关于旋转,关注点在于①绕哪个点旋转;②是否是特殊角度.对于正方形,可绕其中一顶点旋转,可绕对角线交点旋转,大致如下:
(1)绕顶点旋转的手拉手模型
(2)绕O点的等腰直角共点旋转
看几个关于旋转的简单例子:
旧题重看——正方形手拉手模型
共点旋转——以对角线交点为旋转点
旋转——旋转点在对角线上的旋转
若已知旋转,寻找其中的全等或相似即可,而构造旋转,往往更考验对图形构造及旋转的理解.关于正方形的共点旋转,有如下结论:
在正方形ABCD中,点P是正方形内一点,
若满足∠APD=135°,则有2PA²+PD²=PB².
反之,若2PA²+PD²=PB²,则∠APD=135°.(在旋转章节中有过介绍)
2018烟台中考——旋转的构造
关于正方形的旋转大题也有很多,举一例:
探究正方形的旋转
在上一个例题中不难得出这样一个图形:
若连接两个正方形的对角线,则会有一组旋转型相似,这里其实利用的是等腰直角三角形直角边与斜边的比例关系,可将图形简化如下:
连接起对角线,转化成等腰直角三角形,则还另有结论.
如图,正方形ABCD与正方形CEFG共顶点C,连接CA、CF,取AF中点M.
连接ME、MD,则有:MD=ME,ME⊥ME.
连接MB、MG,则有:MB=MG,MB⊥MG.
在说这个证明之前,我们要说说一个模型:
反相似手拉手模型(苏州学而思徐杰老师取名)
手拉手模型:四线共点、两两相等、夹角相等,即可构成一组旋转型全等,称之为手拉手模型.如图,AB=AC,AD=AE,∠BAC=∠DAE,即可得:△ABD≌△ACE.
手拉手相似:改变全等的条件,即线段由相等变为成比例,AB:AC=AD:AE,∠BAC=∠DAE,即可构成手拉手相似.
可将条件化为:当△ABC和△ADE为直角三角形,且∠BAC=∠DAE,
可得△ABE∽△ACE.
反相似手拉手:将其中一个三角形“反”过来,故称反相似手拉手.
特别地,△ABC和△ADE是等腰直角三角形,则有FC=FE,FC⊥FE.
模型证明
在△ABC中,分别以AB、AC为斜边分别向外侧作等腰直角△ABD和等腰直角△ACE,∠ADB=∠AEC=90°,F为BC边中点,连接DF、EF,求证:DF=EF,DF⊥EF.
法1:构造中位线与斜边中线
法2:还原手拉手
法3:倍长中线
法4:构造三垂直模型
中考题中的反相似手拉手:
动态探究——运动中的反相似手拉手
方法提炼——静止的反相似手拉手观察
/