使用FACETS对ngs数据找CNV

这个工具,FACETS (Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing), 的文章发表不到两年,Nucleic Acids Res. 2016 就收获了近100个应用,有可能因为是MSKCC出品:https://github.com/mskcc/facets 可以对配对的肿瘤样品的WGS,WES,捕获测序数据找CNV,非常好用。

肿瘤样本拷贝数变异 (CNV,copy number variation),即 somatic CNV 是最主要的体细胞突变之一。

值得一提的是对肿瘤外显子来分析CNV, 我测试过很多工具了:

WES的CNV探究-conifer软件使用

单个样本NGS数据如何做拷贝数变异分析呢

肿瘤配对样本用varscan 做cnv分析

使用cnvkit来对大批量wes样本找cnv

GATK4的CNV流程-hg38

使用sequenza软件判定肿瘤纯度

正常细胞的基因组是二倍体,而在肿瘤细胞中基因组某些区域拷贝数会发生扩增 (amplification) 或缺失 (deletion) 从而改变基因组原有的状态,且大小约在50bp-1Mb之间。理想的 CNV 检测方法应该是能又快又准的定量基因组范围内拷贝数变化,同时能全面定位 CNV 发生的断点及其位置。

使用方法

比较诡异的是这个R包不在bioconductor仓库,而是在GitHub上面,而且比较大,在国内安装可能是会失败,安装代码如下:

if(F){
  devtools::install_github("mskcc/facets", build_vignettes = TRUE)
  devtools::install_github("mskcc/pctGCdata")
}

其中我踩过的一个坑是:https://mp.weixin.qq.com/s/h0NuxMOb3MY0ADGKCROejg

成功安装R包后,只需要输入文件即可使用,示例输入文件如下:

> head(rcmat)
  Chromosome Position N.DP N.RD T.DP T.RD
1          1    13813      1      0      4      3
2          1    13838      2      0      3      2
3          1    14542      4      0     13      3
4          1    14574      7      0     21      4
5          1    14599      9      0     28      4
6          1    14604      9      0     31      4

就是6列数据库,分别是样品走gvcf文件所能找到的所有变异位点的染色体,起始坐标,病人配对样品的正常对照的总测序深度,allele的深度,以及病人的肿瘤样品的总测序深度,allele的深度。

至于这个输入文件如何制作,可以参考:https://mp.weixin.qq.com/s/RPuuhkC16nFEoXWinVSnUQ (在R里面玩转VCF教程)

真正运行CNV步骤代码如下:

## fit segmentation tree
xx = preProcSample(rcmat)
## estimate allele specific copy numbers
oo=procSample(xx,cval=150)
## EM fit version 1
fit=emcncf(oo)
tmp=fit$cncf
head(fit$cncf)
fit$purity
fit$ploidy
plotSample(x=oo,emfit=fit)

其中preProcSample函数会对肿瘤配对样品的基因型矩阵进行一些预处理,包括测序深度的控制,等位基因频率的控制,两个很重要的值定义是:

  • logR is dened by the log-ratio of total read depth in the tumor versus that in the normal

  • logOR is dened by the log-odds ratio of the variant allele count in the tumor versus in the normal.

procSample函数里面的CBS算法来根据这两个值来计算拷贝数变化区域,其中pre-determined critical value (cval)这个参数可以控制敏感性,该值越小,那么找到的CNV区域就越多。

最后使用emcncf函数来进行Call allele-specic copy number and associated cellular fraction, estimate tumor purity and ploidy.算法,得到的结果里面

  • cf, tcn, lcn are the initial estimates of cellular fraction, total and minor copy number estimates

  • cf.em, tcn.em, lcn.em are the estimates by the mixture model optimized using the EM-algorithm.

结果图分成3部分需要仔细研读和理解:

最上面的和中间的图就是为了展示所有位点的logR和logOR值在染色体的发布啦,最下面的图才是最后CBS算法

颜色区分拷贝数,但是作者的配色很诡异,不是主流:

  • Dark blue indicates high cf.

  • Light blue indicates low cf.

  • Beige indicates a normal segment (total=2,minor=1).

传统检测 CNV 的方法有

  • Fluorescence In Situ Hybridization (FISH)

  • NanoString’s digital detection technology

  • array comparative genomic hybridization (array CGH)

  • Single Nucleotide Polymorphism (SNP) array

这些方法受到自身的局限性,如杂交背景噪音,有限的基因组覆盖度,较低的检测分辨率等,因此很难用于检测新型和低频的CNV。随着测序技术的发展,二代测序已成为基因分型和分析 CNV 最流行的手段,不仅可以完美弥补了传统方法的局限性,又可以提高通量、降低成本及缩短周期。综合考虑到二代测序的优势,研究者们开发了一系列基于不同算法适用于不同测序策略的 somatic CNV 分析软件!

基于NGS数据的检测CNV

一般来说有三种主要的检测CNV的算法:

  • 1) read count;

  • 2) paired-end;

  • 3) assembly

随着测序成本的降低以及测序深度的增加,read count 成为最主要的方法。

Read count 方法原理是利用一个非重复滑动的窗口去统计覆盖到与该窗口重叠的基因组区域内 reads 数量,从而推断发生 CNV 的位置。Read count 分析方法包括两个步骤:预处理 (preprocessing) 和分段处理 (segmentation)。

预处理步骤可以对样本比对后的 BAM / SAM / Pileup 等文件进行均一化处理,也可以使用 de-noising 的算法去除 WES 数据中存在的偏好性和背景噪音;分段处理步骤会利用一些统计模型对具有相似 read count 的区域合并去预估CNV的大小,常见的统计模型有circular binary segmentation (CBS), hidden Markovmodel (HMM) 等。

NGS数据的CNV检测的挑战

虽然测序技术逐步在提高,检测 CNV 的软件也一直在更新,但是肿瘤样本中 somatic CNV 的检测依然存在一些挑战。基本挑战包括:测序数据质量和测序策略选择。

  • 首先,基于read count方法检测CNV,最主要的是寻找基因组某一区段内的reads数量与CNV的关系。然而这种关系会受到样本GC偏好性、数据比对偏好性、实验操作背景噪音以及测序偏好性的影响。

  • 其次,在选择WES或TRS测序时,探针的捕获偏好性以及reads在不同外显子区的分布偏好性会影响到CNV检测时的数据统计,会成为CNV检测算法的背景噪音。

最重要的挑战是肿瘤样本本身的复杂性,包括肿瘤纯度、倍性以及克隆结构异质性。CNV 在肿瘤样本基因组上具有广泛性以及多样性,因此 germline CNV 与 somatic CNV 不同之处在于,somatic CNV 可以发生在基因组任何区域且突变频率低。

其次,肿瘤样本中污染正常细胞时,会降低 read count 和 read depth 值,使 BAFs 值脱离理论值,影响分段步骤中 CNV 数量估计;基因组非整倍性情况的存在会严重影响肿瘤样本中 BAF 的状态,以及 read count 和 read depth 的基线。

最后,肿瘤样本中克隆结构存在异质性,导致一些低频亚克隆结构检出困难,虽然提高测序深度可以帮助检测低频亚克隆,但是想要精准检测 somatic CNV 还是需要综合考虑样本的复杂程度。

参考自:http://www.biotrainee.com/thread-2447-1-1.html

■   ■   ■

(0)

相关推荐

  • 陈根:全基因组测序,为精准治疗添砖加瓦

    文|陈根 许多基因可以在多种生物学过程或分子功能中发挥作用.在全基因组水平上鉴定多功能基因并研究其特性可以揭示支持细胞功能的分子事件的复杂性,从而使人们更好地了解细胞的功能格局. 全基因组测序是对生物 ...

  • 【首发】病原微生物测序企业予果生物获得近亿元融资,北极光创投投资

    动脉网近日获悉,予果生物科技(北京)有限公司(以下简称"予果生物")于2019年8月获得北极光创投首轮独家投资,之后产业基金.金融机构对其持续注资,累计融资近亿元.本轮融资将用于深 ...

  • 简单测试就能诊断癌症及其类型,Freenome是如何做到的?

    Freenome是美国费城一家新兴液体活检诊断生物技术公司,通过对血液(自由细胞)中遗传物质流的动态收集,来诊断是否患有癌症.与传统癌症检测相比,切片诊断等繁复耗时的检测手段,同时还能作为癌症的检测系 ...

  • 单个样本NGS数据如何做拷贝数变异分析呢

    PDF R Script 读其文档的时候发现,是可以针对单个样本进行拷贝数变异分析的,代码如下: library(seqCNA) data(seqsumm_HCC1143) head(seqsumm_ ...

  • 使用cnvkit来对大批量wes样本找cnv

    cnvkit被设计来处理同一个批次的多个肿瘤配对样本测序情况,首先对所有的normal数据进行bin处理拿到背景值,然后就这个背景值来处理所有的tumor测序数据计算拷贝数变异情况. 该软件使用比较复 ...

  • 如何对多个转录组测序数据找变异呢

    以前生信技能树发过这个教程: RNA-seq 检测变异之 GATK 最佳实践流程 第一次对参考基因组建索引 然后进行第一次序列比对 之后根据第一次比对得到的所有剪切位点,重新对参考基因组建立索引 再进 ...

  • 使用STAR-fusion来对转录组数据找融合基因

    看了这么多找融合基因的工具,目前只有这个最方便及靠谱,不仅仅是因为它发表于2017年,更重要的是他可以直接基于STAR比对好的bam文件来做分析,而大多数其它软件,需要从fastq文件开始,都不方便. ...

  • 用deFuse来对转录组数据找融合基因

    首先提醒一下,该工具需要下载 108 G 的数据库文件才能运行,而且仅仅是针对hg19这一个参考基因组.但是因为其发表的非常早,即使不好用,也仍然是目前最主流的转录组数据找融合基因工具之一. 该工具发 ...

  • 肿瘤外显子找CNV和以前的外显子CGH芯片找CNV比较

    肿瘤数据分析文献大放送 这里我就推荐一些: 文献1.基于大规模临床队列的CNV图谱评估外显子测序和外显子CGH芯片的CNV 文章于2014年发表于Genetics in Medicine,标题是Ass ...

  • 明码标价之WES等DNA测序数据找变异

    最近有粉丝在我们<生信技能树>公众号后台付费求助,想重新分析一下某肿瘤队列文献的数据,需要下载几个T的fq数据走比对流程,然后找SNV和CNV等变异. 因为他的课题是保密的,我这里不方便提 ...

  • 使用broad出品的inferCNV来对单细胞转录组数据推断CNV信息

    软件项目地址: https://github.com/broadinstitute/inferCNV.git 我在 https://mp.weixin.qq.com/s/Qns9TCSgNg_CQuw ...

  • 自己写代码计算单细胞转录组数据的CNV及绘制热图

    前面我们提到过broad开发了工具来对单细胞转录组数据计算CNV及绘制热图,因为这个方法学本来就是他们建立起来的. 单细胞转录组数据分析CNV 使用broad出品的inferCNV来对单细胞转录组数据 ...