仅需2张图,AI便可生成完整运动过程

Python爱好者社区 今天
金磊 发自 凹非寺 
量子位 报道 | 公众号 QbitAI

先给一张侧脸(关键帧1):

再给一张正脸(关键帧2):

然后仅仅根据这两张图片,AI处理了一下,便能生成整个运动过程

而且不只是简单的那种,连在运动过程中的眨眼动作也“照顾”得很到位。

效果一出,便在Reddit上引发了不少热议:

仅需2个关键帧,如何实现完整运动?

不需要冗长的训练过程。

不需要大量的训练数据集。

这是论文作者对本次工作提出的两大亮点。

具体而言,这项工作就是基于关键帧将视频风格化。

先输入一个视频序列 I ,它由N个帧组织,每一帧都有一个掩膜Mi来划分感兴趣的区域。

与此前方法不同的是,这种风格迁移是以随机顺序进行的,不需要等待顺序靠前的帧先完成风格化,也不需要对来自不同关键帧的风格化内容进行显式合并。

也就是说,该方法实际上是一种翻译过滤器,可以快速从几个异构的手绘示例 Sk 中学习风格,并将其“翻译”给视频序列 I 中的任何一帧。

这个图像转换框架基于 U-net 实现。并且,研究人员采用基于图像块 (patch-based)的训练方式和抑制视频闪烁的解决方案,解决了少样本训练和时间一致性的问题。

而为了避免过拟合,研究人员采用了基于图像块的训练策略。

从原始关键帧(Ik)中随机抽取一组图像块(a),在网络中生成它们的风格化对应块(b)。

然后,计算这些风格化对应块(b)相对于从风格化关键帧(Sk)中取样对应图像块的损失,并对误差进行反向传播。

这样的训练方案不限于任何特定的损失函数。本项研究中,采用的是L1损失、对抗性损失和VGG损失的组合。

另一个问题便是超参数的优化

这是因为不当的超参数可能会导致推理质量低下。

研究人员使用网格搜索法,对超参数的4维空间进行采样:Wp——训练图像块的大小;Nb——一个batch中块的数量;α——学习率;Nr——ResNet块的数量。

对于每一个超参数设置:

(1)执行给定时间训练;

(2)对不可见帧进行推理;

(3)计算推理出的帧(O4)和真实值(GT4)之间的损失。

而目标就是将这个损失最小化。

团队介绍

这项研究一作为Ondřej Texler,布拉格捷克理工大学计算机图形与交互系的博士生。

而除了此次的工作之外,先前他和团队也曾做过许多有意思的工作。

例如一边画着手绘画,一边让它动起来。

再例如给一张卡通图片,便可让视频中的你顶着这张图“声情并茂”。

想了解更多有趣的研究,可戳下方链接👇。

参考链接:

[1]https://www.reddit.com/r/MachineLearning/comments/n3b1m6/r_fewshot_patchbased_training_siggraph_2020_dr/
[2]https://ondrejtexler.github.io/patch-based_training/index.html

(0)

相关推荐

  • 能“看穿”换脸视频背后的AI模型

    Deepfake是一款非常火的AI换脸工具,可以将专业复杂的AI换脸过程简单化,实现快速换脸,制作的内容甚至可以以假乱真. 但是,现在的技术不仅可以判断照片是否假冒伪劣,还可以跟踪所有背后的信息,你信 ...

  • 这可能是最强的AI算法可视化神器!

    AI/CV重磅干货,第一时间送达 CVer 一个专注侃侃计算机视觉方向的公众号.计算机视觉.图像处理.机器学习.深度学习.C/C++.Python.诗和远方等. 198篇原创内容 公众号 仅凭数行代码 ...

  • 人工智能“干掉”程序员后,又对艺术家下手了

    人工智能领域缺钱,但这两个月来,他们不缺「好消息」. Google 母公司 Alphabet 旗下的 DeepMind,先推出了蛋白质结构预测 AI--AlphaFold 2,为困扰了生化学界 50 ...

  • 使用姿势估计进行跌倒检测

    重磅干货,第一时间送达 所有目标检测已成为动作识别研究的重要垫脚石,即训练AI对行走和坐下等一般动作进行分类.为了使AI能够理解接收到的输入,我们需要教它检测特定的图案和形状,并制定自己的规则. 为了 ...

  • 深度学习?不一定非得搞“黑箱”

    杜克大学的科学家们在<自然:机器智能>提出了"概念白化(concept whitening)"技术,其将可解释性引入深度学习模型,而不再由模型自主在数百万训练得出的参数 ...

  • 文本生成图像的新SOTA:Google的XMC-GAN

    来源:新智元 [导读]从图像到生成文本.从文本生成图像,多模态模型的探索一直未停止.最近Google又出从文本到图像的新模型,75%的人类都说超过了传统的SOTA模型,直呼脑子里有画面了! 文本到图像 ...

  • 基于OpenCV的面部关键点检测实战

    重磅干货,第一时间送达 这篇文章概述了用于构建面部关键点检测模型的技术,这些技术是Udacity的AI Nanodegree程序的一部分. 概述 在Udacity的AIND的最终项目中,目标是创建一个 ...

  • 【AI初识境】如何增加深度学习模型的泛化能力

    这是专栏<AI初识境>的第9篇文章.所谓初识,就是对相关技术有基本了解,掌握了基本的使用方法. 今天来说说深度学习中的generalization问题,也就是泛化和正则化有关的内容. 作者 ...

  • 【AI初识境】给深度学习新手做项目的10个建议

    这是专栏<AI初识境>的第12篇文章.所谓初识,就是对相关技术有基本了解,掌握了基本的使用方法. 在成为合格的深度学习算法工程师,尤其是工业界能够实战的调参选手之前,总会踏足很多的坑. 今 ...

  • 不用激光雷达,照样又快又准!3D目标检测之SMOKE

    向大家介绍一篇CVPR 2020 Workshop的文章:SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimati ...