高中物理入门之十八:电磁场与带电粒子的运动B——例题分析

[例1] 在xOy水平面中有一通电导线,与x轴平行,导线中电流方向为正x方向,该区域有匀强磁场,通电导线所受磁场力的方向与z轴正方向相同,该磁场的方向是( )

A.一定沿y轴负方向

B.一定沿x轴负方向

C.可能沿z轴正方向

D.可能沿y轴负方向

解析:安培力F垂直于磁场和电流决定的平面,而磁场不需要垂直于电流方向,所以只能选D,而不能选A。

[例2] 如图,三根相互平行的固定长直导线

两两等距,均通有电流

电流方向相同,与

中电流方向相反,下列说法正确的是( )

A.

受磁场作用力的方向与

所在平面垂直

B.

所受磁场作用力的方向与

所在平面垂直

C.

单位长度所受的磁场作用力大小之比为1:1:

D.

单位长度所受的磁场作用力大小之比为

:1

解析:利用常用结论,马上可以做出判断

互相排斥,

互相排斥,

互相吸引,受力分析如图中所标,很容易得出正确答案B、C。

[例3]如图所示,摆球带负电的单摆,在一匀强磁场中摆动,匀强磁场的方向垂直纸面向里,摆球在AB间摆动的过程中,由A摆到最低点C时,摆线拉力的大小为

,摆球的加速度大小为

,由B摆到最低点C时,摆线拉力的大小为

,摆球加速度为

,则( )

A.F_{2}'>

B.

A.F_{2}'>

,a_{2}'>

B.

解析:带电小球运动受到洛伦兹力,但洛伦兹力始终与小球运动方向垂直,所以不做功,即无论从A到C还是从B到C,小球只受重力做功,所以到达C点的速度是一样的,速度一样,

所以加速度也是一样的。

但由于运动方向不同洛伦兹力方向也不同,所以拉力是不一样的。

由左手定则可知,

从A到C时,洛伦兹力向上,

从B到C时,洛伦兹力向下,

所以,选B。

[例4] 如图所示,光滑的、足够长的三角形绝缘槽与水平面的夹角分别为α和β,且α<β,加上垂直纸面向里的匀强磁场,分别将质量相等、带等量正、负电荷的小a、b依次从斜槽的顶端由静止开始释放,关于两球在槽上的运动情况,下列判断中错误的是( )

A.两球均做匀加速直线运动,且a_{b}'>

B.两球均做变加速直线运动,且a_{b}'>

C.两球在槽上的最大位移

D.两球在槽上运动的时间

解析:小球受力,重力、支持力和洛伦兹力,在槽上运动即未脱离槽,此时洛伦兹力垂直斜面,小球的加速度为gsinθ,沿斜面向下,而α<β,所以A正确,B错误;

小球脱离槽时有最大位移,此时

Bqv=mgcosθ

由于cosα>cosβ,所以v_{a}'>

而a_{b}'>

,显然有

,C正确;

,显然有

,D正确 。

[例5]如图,边界ab左边存在垂直纸面向里的匀强磁场B,磁场中有一带正电荷q的粒子源S,距离ab边界d,粒子向各个方向发射的速度大小均为

,d<2R,试求粒子在ab边界上射出的范围。

解析:粒子无论向哪个方向运动,半径R都是一样的,

过S做ab的垂线,与ab交于点O,设上边界点距离O点的距离为a,由几何知识可知,

所以

设下边界点距离O点的距离为b,则有

所以

[例6] 如图,宽h=2cm的有界匀强磁场的纵向范围足够大,磁感应强度的方向垂直于纸面向里,现有一群带正电的粒子从O点以相同的速率沿纸面不同方向射入磁场,若粒子在磁场中做匀速圆周运动的轨迹半径r均为5cm,不计粒子的重力,则( )

A.右边界:-4cm<y<4cm内有粒子射出

B.右边界:y>4cm和y<-4cm内有粒子射出

C.左边界:y>8cm内有粒子射出

D.左边界:0cm<y<8cm内有粒子射出

解析:半径r=5cm,磁场宽度d=2cm,几何知识,

右上边界

cm;

右下边界

cm;

所以A正确,B错误;

左上边界

cm;

左下边界

所以C错误,D正确。

[例7] 如图所示,在坐标系xOy中,第一象限内充满着两个匀强磁场a和b,OP为分界线,在区域a中,磁感应强度为2B,方向垂直于纸面向里,在区域b中,磁感应强度为B,方向垂直于纸面向外,P点坐标为(4L,3L),一质量为m、电荷量为q的带正电粒子从P点沿y轴负方向射入区域b,经过一段时间后,粒子恰能经过原点O,不计粒子重力,求:

⑴粒子从P点运动到O点的最短时间是多少?

⑵粒子运动的速度可能是多少?

解析:我们知道对于直线的磁场边界,粒子进入的角度和离开的角度是相同的,也就意味着不论粒子的速度是多少,在磁场内运动的圆心角不会改变,而圆心角又对应着运动时间,所以粒子从P到O的最短时间对应着最小的圆心角。

⑴ 如图所示,粒子在两个磁场各进出一次到达O点所用时间即为最短时间。

设弦切角为

,有

所以圆心角为

磁场a中的周期

磁场b中的周期

可求得

⑵OP=5L,粒子要能够到达O点,则OL必须是图中两段弦长的整数倍。

设粒子的速度为

,则

磁场a中的运动半径

求出a中的弦长

磁场b中的运动半径

求出b中的弦长

速度v满足

(n=1,2,3...)

[例8] 如图所示,在x轴上方有匀强磁场,磁感应强度为B,在x轴下方有匀强电场,场强为E,方向如图,PQ是一个垂直于x轴的屏幕,O点到PQ的距离为L,有一质量为m、电荷量为-q的粒子(不计重力),从y轴的M点由静止释放,最后垂直打在PQ上,求:

⑴M点的y轴坐标;

⑵粒子在整个运动过程中的路程s。

解析:⑴粒子从M到O,以速度

进入磁场做圆周运动,速度不变,经过半圆后回到电场,运动到与M等高的点,重复之前的运动,垂直打在PQ上,即 L是轨迹圆半径的奇数倍。

设M点坐标为(0,-d),则有

设粒子在磁场中运动的半径为R,则

且满足 (2n-1)R=L,

联立以上三式,可得

(n=1,2,3…)

⑵粒子运动的总路程是电场中运动的路程和磁场中运动的路程之和,

(n=1,2,3…)

[例9] 如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上、下磁场的水平分界线,在NS和MT边界上,距KL高h处分别有P、Q两点,NS和MT间距为1.8h,质量为m、带电荷量为+q的粒子从P点垂直于NS边界射入该区域,在两边界之间做圆周运动,重力加速度为g,

⑴求电场强度的大小和方向;

⑵要使粒子不从NS边界飞出,求粒子入射速度的最小值;

⑶若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值。

解析:⑴粒子做圆周运动,亦即电场力与重力平衡,则有

,方向竖直向上;

⑵设粒子不从NS边界飞出的入射速度最小值为

,此时粒子在上、下区域的运动半径分别为

连接两个圆的圆心,由几何知识,有

联立以上各式,解得

⑶粒子能经过Q点从MT边界飞出,此时速度必然垂直于边界,如图

粒子每完成一次周期运动,对应在KL上前进的距离为3a(因为

),则n个周期前进的距离满足

联立解得

,(n=1,2,3...)

n=1时,v_{min}'>

n=2时,v_{min}'>

n=3时,v_{min}'>

n=4时,

,不合题意,所以有3个速度值满足要求。

[例10] 如图所示,直径分别为D和2D的同心圆处于一竖直平面内,O为圆心,GH为大圆的水平直径,两环之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直于纸面向里的匀强磁场,一带电粒子沿过H点的切线方向向上以速度

进入磁场,Ⅰ区磁感应强度大小为

,Ⅱ区磁感应强度大小为

,粒子运动一段时间后将再次经过H点,求路程s。

解析:因为洛伦兹力并不改变速度大小,所以求路程s等同于求粒子的运动时间t,通过

即可求得。

粒子在Ⅰ区和Ⅱ区的运动半径和周期分别为

粒子首先沿圆弧HA运动:由几何知识可知

圆心角

然后沿半圆弧AB运动(弦AB长度为直径长度):

圆心角

再沿圆弧BC运动,与沿圆弧HA运动对称:

圆心角

,粒子要回到H点需完成以上过程6次

所以总时间

路程

.

[例11] 如图所示,在x轴下方的第三、第四象限中,存在垂直于xOy平面方向的匀强磁场,磁感应强度

=

=

,带电粒子a、b分别从x轴上的P、Q两点(图中未标出)以垂直于x轴方向的速度同时进入磁场

中,两粒子恰在第一次通过y轴时发生正碰,碰撞前带电粒子a的速度方向与y轴正方向成60 角,若两带电粒子的比荷分别为

,进入磁场时的速度大小分别为

,不计粒子重力和粒子间的相互作用,正确的是( )

A.

B.

C.

D.

解析:由于粒子速度方向与圆心垂直,易知两粒子运动轨迹的圆心重合,即半径相等。

a的圆心角

b的圆心角

二者的运动时间t相等,所以

再由半径相等,可得

,选择C。

[例12] 如图所示,在y轴上A点沿平行于x轴正方向以

发射一个带正电的粒子,在该方向距A点3R处的B点为圆心存在一个半径为R的圆形有界匀强磁场,磁场方向垂直于纸面向外,当粒子通过磁场后打到x轴上的C点,且速度方向与x轴正方向成60度 斜向下,已知带电粒子的电荷量为q,质量为m,粒子不计重力,O点到A点的距离为

R,求:

⑴磁场的磁感应强度B的大小;

⑵若撤掉磁场,在该平面内加上一个与y轴平行的有界匀强电场,粒子仍按原方向入射,当粒子进入电场后一直在电场力的作用下打在x轴上的C点,且速度方向仍与x轴正方向成60度 斜向下,则该电场的左边界与y轴的距离为多少?

⑶若撤掉电场,在该平面内加上一个与⑴问磁感应强度大小相同的矩形有界匀强磁场,磁场方向垂直于纸面向里,粒子仍按原方向入射,通过该磁场后打到x轴上的C点且速度方向仍与x轴正方向成60 度角斜向下,则所加矩形磁场的最小面积为多少?

解析:⑴粒子经过磁场的圆心角

即为速偏角

由图易知,粒子运动的轨道半径R'=

R

,可得

⑵由图,易得C点坐标为(5R,0),

由于C点的速偏角

所以从进入电场到C点的位偏角

电场宽度

则可得出电场左边界与y轴的距离为R。

⑶ 由于磁场方向改变,所以粒子运动轨迹也反向,此时,粒子在磁场中运动的圆心角

轨迹半径依然为R',如图中所画矩形即为所求磁场,

矩形的长为

矩形的宽为

可求出磁场的面积

.

[例13] 如图所示,A、C两点分别位于x轴和y轴上,∠OCA=

,OA的长度为L,在三角形OCA区域内有垂直于xOy平面向里的匀强磁场,质量为m、电荷量为q的带正电粒子,以平行于y轴的方向从OA边射入磁场,已知粒子从某点射入时,恰好垂直于OC边射出磁场,且粒子在磁场中运动时间为

,不计重力,

⑴求磁场的磁感应强度B的大小;

⑵若粒子先后从两不同点以相同的速度射入磁场,恰好从OC边上的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和。

⑶若粒子从某点射入磁场后,其运动轨迹与AC边相切,且在磁场内运动的时间为

,求粒子此次入射速度

的大小。

解析:⑴显然圆心角

,所以

,

⑵显然,两次粒子运动的轨迹圆半径相同,设两次运动的轨迹圆心分别为

,两个圆心与射出点的距离均为半径R,易知此时两个圆心角互补,即

所以总时间

.

⑶由于磁感应强度B没有变,所以粒子的运动周期T不变,

当运动时间为

时,对应的圆心角

设此时轨迹半径为R,则由几何关系可得,

解得

再由

联立可得

.

(0)

相关推荐

  • 高三磁场基本功训练23题及答案

    <高三磁场基本功训练23题> (找圆心,求半径,描轨迹,察边界,空间想象,再添数学思维) 1.一个负离子,质量为m,电量大小为q,以速率v垂直于屏S经过小孔O射入存在着匀强磁场的真空室中, ...

  • 高中物理入门之八:滑板与传送带专题

    (阅读本节大约需要30分钟) 1.动力学中的临界问题 两物体分离临界的重要条件: 物体间内力 : 两物体的速度 相等: 两物体的加速度 相等: [例1] 如图所示,光滑水平面放着紧靠在一起的A.B两物 ...

  • 高中物理入门之九:曲线运动与抛体运动A——知识点梳理

    (阅读本节大约需要15分钟) 1.曲线运动 ⑴加速度方向(即受力方向)与速度方向不一致导致曲线运动.如果加速度恒定不变称为定加速运动,如抛体运动:如果加速度变化则为变加速运动,如圆周运动. ⑵运动的合 ...

  • 高中物理入门之六:全反力与摩擦角专题

    (学习本节预计需要20分钟) 1.全反力 物体与支持面之间存在摩擦力 的前提是存在正压力N,由于 总是伴随着N出现,两个力的施力对象和受力对象相同,所以人们经常把两个力结合起来一起考虑,把这两个力的合 ...

  • 高中物理最全十九个章节公式总结整理!

    专业的高中物理学习平台 每天17:00准时相约 高中物理 广受好评的国内高中物理学习.答疑平台,关注即可获得干货(知识+方法+经验),让你追击.相遇学霸,变身物理大咖.是由三好网(sanhao.com ...

  • 八字轻松入门(十八)

    www.xingzuo123.com 18. 兄弟姐妹 比劫如林, 兄弟姐妹成群. 比劫临贵人, 兄弟姐妹富贵. 比劫座禄和将星为喜, 兄弟姐妹富贵. 身旺带印, 兄弟姐妹必多. 日主弱, 月柱印旺, ...

  • 天门人在京山——回到老窝办高中(连载之十八)

    在三阳文教组工作了整两年,到1972年暑假,我找文教局领导,说明我不喜欢搞流动式的工作,要求回到三阳区中学.经局领导同县委组织部和三阳区委研究后,同意了我的要求,同姚铭山同志交换,他到文教组,我回到三 ...

  • 2021年会计零基础入门(十八)

    专题8:长期股权投资基础 考点3:权益法 [例5-12]顺流交易[投-被投] 甲公司持有乙公司20%有表决权的股份,能够对乙公司施加重大影响.2×16年9月(注意,当年提折旧3个月),甲公司将其账面价 ...

  • Python入门(十八):MyQR 二维码制作

    Python入门系列博客到这就需要和大家说再见了,感谢大家一路的陪伴. 最后,奉上 Python 的二维码制作.借助二维码,传达你的心意.又何尝不是一件乐事呢? 在以后的学习和生活中,如果有什么有趣的 ...