PCL点云分割(1)

点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞修复曲面重建,特征描述和提取,进而进行基于3D内容的检索,组合重用等。

案例分析

用一组点云数据做简单的平面的分割:

#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>   //随机参数估计方法头文件
#include <pcl/sample_consensus/model_types.h>   //模型定义头文件
#include <pcl/segmentation/sac_segmentation.h>   //基于采样一致性分割的类的头文件

int main (int argc, char** argv) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);    // 填充点云  cloud->width  = 15;  cloud->height = 1;  cloud->points.resize (cloud->width * cloud->height);  
// 生成数据,采用随机数填充点云的x,y坐标,都处于z为1的平面上 for (size_t i = 0; i < cloud->points.size (); ++i)  {    cloud->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);    cloud->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);    cloud->points[i].z = 1.0;  }
 // 设置几个局外点,即重新设置几个点的z值,使其偏离z为1的平面  cloud->points[0].z = 2.0;  cloud->points[3].z = -2.0;  cloud->points[6].z = 4.0;  std::cerr << "Point cloud data: " << cloud->points.size () << " points" << std::endl;  //打印  for (size_t i = 0; i < cloud->points.size (); ++i)    std::cerr << "    " << cloud->points[i].x << " "                        << cloud->points[i].y << " "                        << cloud->points[i].z << std::endl;

//创建分割时所需要的模型系数对象,coefficients及存储内点的点索引集合对象inliers  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);  // 创建分割对象  pcl::SACSegmentation<pcl::PointXYZ> seg;  // 可选择配置,设置模型系数需要优化  seg.setOptimizeCoefficients (true);  
// 必要的配置,设置分割的模型类型,所用的随机参数估计方法,距离阀值,输入点云
 seg.setModelType (pcl::SACMODEL_PLANE);   //设置模型类型  seg.setMethodType (pcl::SAC_RANSAC);      //设置随机采样一致性方法类型  seg.setDistanceThreshold (0.01);    //设定距离阀值,距离阀值决定了点被认为是局内点是必须满足的条件                                    
  //表示点到估计模型的距离最大值,  seg.setInputCloud (cloud);
 //引发分割实现,存储分割结果到点几何inliers及存储平面模型的系数coefficients  seg.segment (*inliers, *coefficients);  if (inliers->indices.size () == 0)  {    PCL_ERROR ("Could not estimate a planar model for the given dataset.");    return (-1);  }  //打印出平面模型  std::cerr << "Model coefficients: " << coefficients->values[0] << " "                                      << coefficients->values[1] << " "                                      << coefficients->values[2] << " "                                      << coefficients->values[3] << std::endl;  std::cerr << "Model inliers: " << inliers->indices.size () << std::endl;

for (size_t i = 0; i < inliers->indices.size (); ++i)    std::cerr << inliers->indices[i] << "    " << cloud->points[inliers->indices[i]].x << " "<< cloud->points[inliers->indices[i]].y << " "<< cloud->points[inliers->indices[i]].z << std::endl;
 return (0); }

结果如下:开始打印的数据为手动添加的点云数据,并非都处于z为1的平面上,通过分割对象的处理后提取所有内点,即过滤掉z不等于1的点集

(2)实现圆柱体模型的分割:采用随机采样一致性估计从带有噪声的点云中提取一个圆柱体模型。

#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/passthrough.h>
#include <pcl/features/normal_3d.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>

typedef pcl::PointXYZ PointT;intmain (int argc, char** argv) {  // All the objects needed  pcl::PCDReader reader;                    //PCD文件读取对象  pcl::PassThrough<PointT> pass;             //直通滤波对象  pcl::NormalEstimation<PointT, pcl::Normal> ne;  //法线估计对象  pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg;    //分割对象  pcl::PCDWriter writer;            //PCD文件读取对象  pcl::ExtractIndices<PointT> extract;      //点提取对象  pcl::ExtractIndices<pcl::Normal> extract_normals;    ///点提取对象  pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT> ());

pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);  pcl::PointCloud<PointT>::Ptr cloud_filtered (new pcl::PointCloud<PointT>);  pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);  pcl::PointCloud<PointT>::Ptr cloud_filtered2 (new pcl::PointCloud<PointT>);  pcl::PointCloud<pcl::Normal>::Ptr cloud_normals2 (new pcl::PointCloud<pcl::Normal>);  pcl::ModelCoefficients::Ptr coefficients_plane (new pcl::ModelCoefficients), coefficients_cylinder (new pcl::ModelCoefficients);  pcl::PointIndices::Ptr inliers_plane (new pcl::PointIndices), inliers_cylinder (new pcl::PointIndices);  // Read in the cloud data  reader.read ("table_scene_mug_stereo_textured.pcd", *cloud);  std::cerr << "PointCloud has: " << cloud->points.size () << " data points." << std::endl;

// 直通滤波,将Z轴不在(0,1.5)范围的点过滤掉,将剩余的点存储到cloud_filtered对象中  pass.setInputCloud (cloud);  pass.setFilterFieldName ("z");  pass.setFilterLimits (0, 1.5);  pass.filter (*cloud_filtered);  std::cerr << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl;

// 过滤后的点云进行法线估计,为后续进行基于法线的分割准备数据  
 ne.setSearchMethod (tree);  ne.setInputCloud (cloud_filtered);  ne.setKSearch (50);  ne.compute (*cloud_normals);

// Create the segmentation object for the planar model and set all the parameters  seg.setOptimizeCoefficients (true);  seg.setModelType (pcl::SACMODEL_NORMAL_PLANE);  seg.setNormalDistanceWeight (0.1);  seg.setMethodType (pcl::SAC_RANSAC);  seg.setMaxIterations (100);  seg.setDistanceThreshold (0.03);  seg.setInputCloud (cloud_filtered);  seg.setInputNormals (cloud_normals);  //获取平面模型的系数和处在平面的内点  seg.segment (*inliers_plane, *coefficients_plane);  std::cerr << "Plane coefficients: " << *coefficients_plane << std::endl;

// 从点云中抽取分割的处在平面上的点集  
 extract.setInputCloud (cloud_filtered);  extract.setIndices (inliers_plane);  extract.setNegative (false);  // 存储分割得到的平面上的点到点云文件  pcl::PointCloud<PointT>::Ptr cloud_plane (new pcl::PointCloud<PointT> ());  extract.filter (*cloud_plane);  std::cerr << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;  writer.write ("table_scene_mug_stereo_textured_plane.pcd", *cloud_plane, false);

// Remove the planar inliers, extract the rest  extract.setNegative (true);  extract.filter (*cloud_filtered2);  extract_normals.setNegative (true);  extract_normals.setInputCloud (cloud_normals);  extract_normals.setIndices (inliers_plane);  extract_normals.filter (*cloud_normals2);

// Create the segmentation object for cylinder segmentation and set all the parameters  seg.setOptimizeCoefficients (true);   //设置对估计模型优化  seg.setModelType (pcl::SACMODEL_CYLINDER);  //设置分割模型为圆柱形  seg.setMethodType (pcl::SAC_RANSAC);       //参数估计方法  seg.setNormalDistanceWeight (0.1);       //设置表面法线权重系数  seg.setMaxIterations (10000);              //设置迭代的最大次数10000  seg.setDistanceThreshold (0.05);         //设置内点到模型的距离允许最大值  seg.setRadiusLimits (0, 0.1);             //设置估计出的圆柱模型的半径的范围  seg.setInputCloud (cloud_filtered2);  seg.setInputNormals (cloud_normals2);  
 
// Obtain the cylinder inliers and coefficients  seg.segment (*inliers_cylinder, *coefficients_cylinder);  std::cerr << "Cylinder coefficients: " << *coefficients_cylinder << std::endl;

// Write the cylinder inliers to disk  
 extract.setInputCloud (cloud_filtered2);  extract.setIndices (inliers_cylinder);  extract.setNegative (false);  pcl::PointCloud<PointT>::Ptr cloud_cylinder (new pcl::PointCloud<PointT> ());  extract.filter (*cloud_cylinder);  if (cloud_cylinder->points.empty ())    std::cerr << "Can't find the cylindrical component." << std::endl;  else  {      std::cerr << "PointCloud representing the cylindrical component: " << cloud_cylinder->points.size () << " data points." << std::endl;      writer.write ("table_scene_mug_stereo_textured_cylinder.pcd", *cloud_cylinder, false);  }  return (0); }

打印的结果如下

原始点云可视化的结果.三维场景中有平面,杯子,和其他物体

产生分割以后的平面和圆柱点云,查看的结果如下

(3)PCL中实现欧式聚类提取。对三维点云组成的场景进行分割

#include <pcl/ModelCoefficients.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include<pcl/segmentation/extract_clusters.h>
/*打开点云数据,并对点云进行滤波重采样预处理,然后采用平面分割模型对点云进行分割处理 提取出点云中所有在平面上的点集,并将其存盘**/

int main (int argc, char** argv) {  
// Read in the cloud data  
 pcl::PCDReader reader; pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);  
reader.read ("table_scene_lms400.pcd", *cloud);  std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //*

//Create the filtering object: downsample the dataset using a leaf size of 1cm  pcl::VoxelGrid<pcl::PointXYZ> vg;  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);  vg.setInputCloud (cloud);  vg.setLeafSize (0.01f, 0.01f, 0.01f);  vg.filter (*cloud_filtered);  std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size ()  << " data points." << std::endl; //*

//创建平面模型分割的对象并设置参数  pcl::SACSegmentation<pcl::PointXYZ> seg;  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (newpcl::PointCloud<pcl::PointXYZ> ());    pcl::PCDWriter writer;  seg.setOptimizeCoefficients (true);  seg.setModelType (pcl::SACMODEL_PLANE);    //分割模型  seg.setMethodType (pcl::SAC_RANSAC);       //随机参数估计方法  seg.setMaxIterations (100);                //最大的迭代的次数  seg.setDistanceThreshold (0.02);           //设置阀值  int i=0, nr_points = (int) cloud_filtered->points.size ();

while (cloud_filtered->points.size () > 0.3 * nr_points)  {    
// Segment the largest planar component from the remaining cloud    seg.setInputCloud (cloud_filtered);    seg.segment (*inliers, *coefficients);    
if (inliers->indices.size () == 0)    {      std::cout << "Could not estimate a planar model for the given dataset." << std::endl;      
break;    }    pcl::ExtractIndices<pcl::PointXYZ> extract;    extract.setInputCloud (cloud_filtered);    extract.setIndices (inliers);    extract.setNegative (false);

// Get the points associated with the planar surface    extract.filter (*cloud_plane);    std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;    //  
   
   // 移去平面局内点,提取剩余点云    extract.setNegative (true);    extract.filter (*cloud_f);  
   *cloud_filtered = *cloud_f;  }

// Creating the KdTree object for the search method of the extraction  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);  tree->setInputCloud (cloud_filtered);  std::vector<pcl::PointIndices> cluster_indices;  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;   //欧式聚类对象  ec.setClusterTolerance (0.02);             // 设置近邻搜索的搜索半径为2cm  ec.setMinClusterSize (100);                 //设置一个聚类需要的最少的点数目为100  ec.setMaxClusterSize (25000);               //设置一个聚类需要的最大点数目为25000  ec.setSearchMethod (tree);                    //设置点云的搜索机制  ec.setInputCloud (cloud_filtered);  ec.extract (cluster_indices);//从点云中提取聚类,并将点云索引

//迭代访问点云索引cluster_indices,直到分割处所有聚类  int j = 0;  
for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)  {    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);

for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)        cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*    cloud_cluster->width = cloud_cluster->points.size ();    cloud_cluster->height = 1;    cloud_cluster->is_dense = true;    std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;    std::stringstream ss;    ss << "cloud_cluster_" << j << ".pcd";    writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); //*    j++;  }  
return (0); }

运行结果:

不再一一查看可视化的结果

不小心把这一篇放在后面发了,这也是基础知识,似乎公众号可以评论了,因为申请了原创保护,当然我还是那一句话,希望大家能够分享关于点云的知识,比如论文,需要解决的应用等等,分享才是硬道理!

(0)

相关推荐