(1条消息) 三数之和,程序员才懂的 Three Sum !
今天给大家讲解一道经典鹅厂面试题,有一定难度。大家认真看哦。
建议先回顾一下前面关于该题简化版,二数之和。
01、题目示例
该题为 二数之和 的进阶版本,当然还有一个进阶版本为 四数之和。我们将会一一进行分析!
第15题:三数之和 |
---|
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。注意:答案中不可以包含重复的三元组。 |
示例:
给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为:
[
[-1, 0, 1],
[-1, -1, 2]
]
02、题目分析
本题的暴力题解可以仿照二数之和,直接三层遍历,取和为0的三元组,并记录下来,最后再去重。但是作为一个有智慧的人,我们不能这么去做。
因为我们的目标是找数,当然使用指针的方式最简单。假若我们的数组为:
[-1, 0, 1, 2, -1, -4]
求解过程如下:首先我们先把数组排个序(原因一会儿说),排完序长这样:
因为我们要同时找三个数,所以采取固定一个数,同时用双指针来查找另外两个数的方式。所以初始化时,我们选择固定第一个元素(当然,这一轮走完了,这个蓝框框我们就要也往前移动),同时将下一个元素和末尾元素分别设上 left 和 right 指针。画出图来就是下面这个样子:
现在已经找到了三个数,当然是计算其三值是否满足三元组。但是这里因为我们已经排好了序,如果固定下来的数(上面蓝色框框)本身就大于 0,那三数之和必然无法等于 0。比如下面这种:
然后自然用脚指头也能想到,我们需要移动指针。现在我们的排序就发挥出用处了,如果和大于0,那就说明 right 的值太大,需要左移。如果和小于0,那就说明 left 的值太小,需要右移。(上面这个思考过程是本题的核心) 整个过程如下图所示:
其中:在第6行时,因为三数之和大于0,所以right进行了左移。最后一行,跳过了重复的-1。
然后啰嗦一句,因为我们需要处理重复值的情况。除了固定下来的i值(蓝框框),left 和 right 当然也是需要处理重复的情况,所以对于 left 和 left+1,以及 right 和 right-1,我们都单独做一下重复值的处理。(其实没啥处理,就是简单的跳过)
03、代码展示
四数之和其实与本题解法差不太多,把固定一个数变成两个,同样还是使用双指针进行求解就可以了。
根据上面的分析,顺利得出代码(给一个Java版本的):
//java
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> res = new ArrayList();
for (int i = 0; i < nums.length; i++) {
int target = 0 - nums[i];
int l = i + 1;
int r = nums.length - 1;
if (nums[i] > 0)
break;
if (i == 0 || nums[i] != nums[i - 1]) {
while (l < r) {
if (nums[l] + nums[r] == target) {
res.add(Arrays.asList(nums[i], nums[l], nums[r]));
while (l < r && nums[l] == nums[l + 1]) l++;
while (l < r && nums[r] == nums[r - 1]) r--;
l++;
r--;
} else if (nums[l] + nums[r] < target)
l++;
else
r--;
}
}
}
return res;
}
}
执行结果:
给一个python版本的(这个我就直接拿别人的代码了,思想都一样)
//python
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
n=len(nums)
res=[]
if(not nums or n<3):
return []
nums.sort()
res=[]
for i in range(n):
if(nums[i]>0):
return res
if(i>0 and nums[i]==nums[i-1]):
continue
L=i+1
R=n-1
while(L<R):
if(nums[i]+nums[L]+nums[R]==0):
res.append([nums[i],nums[L],nums[R]])
while(L<R and nums[L]==nums[L+1]):
L=L+1
while(L<R and nums[R]==nums[R-1]):
R=R-1
L=L+1
R=R-1
elif(nums[i]+nums[L]+nums[R]>0):
R=R-1
else:
L=L+1
return res
所以,今天的问题你学会了吗,评论区留下你的想法!
我把我写的所有题解都整理成了一本电子书,每道题都配有完整图解。点击即可下载