板式换热器优化设计方法

01

板式换热器优化设计方向

近年来,板式换热器技术日益成熟,其传热效率高,体积小,重量轻,污垢系数低,拆卸方便,板片品种多,适用范围广,在供热行业得到了广泛应用。板式换热器按组装方式分为可拆式、焊接式、钎焊式、板壳式等。由于可拆式板式换热器便于拆卸清洗,增减换热器面积灵活,在供热工程中使用较多。可拆式板式换热器受橡胶密封垫耐热温度的限制,适用于水一水传热。本文对提高可拆式板式换热器效能的优化设计进行研究。

提高板式换热器的效能是一个综合经济效益问题,应通过技术经济比较后确定。提高换热器的传热效率和降低换热器的阻力应同时考虑,而且应合理选用板片材质和橡胶密封垫材质及安装方法,保证设备安全运行,延长设备使用寿命。

02

板式换热器优化设计方法

2.1提高传热效率

板式换热器是问壁传热式换热器,冷热流体通过换热器板片传热,流体与板片直接接触,传热方式为热传导和对流传热。提高板式换热器传热效率的关键是提高传热系数和对数平均温差。

① 提高换热器传热系数只有同时提高板片冷热两侧的表面传热系数,减小污垢层热阻,选用热导率高的板片,减小板片的厚度,才能有效提高换热器的传热系数。

a.提高板片的表面传热系数

由于板式换热器的波纹能使流体在较小的流速下产生湍流 (雷诺数一 150时 ),因此能获得较高的表面传热系数,表面传热系数与板片波纹的几何结构以及介质的流动状态有关。板片的波形包括人字形、平直形、球形等。经过多年的研究和实验发现,波纹断面形状为三角形 (正弦形表面传热系数最大,压力降较小,受压时应力分布均匀,但加工困难?)的人字形板片具有较高的表面传热系数,且波纹的夹角越大,板间流道内介质流速越高,表面传热系数越大。

b.减小污垢层热阻

减小换热器的污垢层热阻的关键是防止板片结垢。板片结垢厚度为 1 mm时,传热系数降低约 10%。因此,必须注意监测换热器冷热两侧的水质,防止板片结垢,并防止水中杂物附着在板片上。有些供热单位为防止盗水及钢件腐蚀,在供热介质中添加药剂,因此必须注意水质和黏 *剂引起杂物沾污换热器板片。如果水中有黏性杂物,应采用专用过滤器进行处理。选用药剂时,宜选择无黏性的药剂。

c.选用热导率高的板片

板片材质可选择奥氏体不锈钢、钛合金、铜合金等。不锈钢的导热性能好,热导率约14.4 W/(m·K) ,强度高,冲压性能好,不易被氧化,价格比钛合金和铜合金低,供热工程中使用最多,但其耐氯离子腐蚀的能力差。

d.减小板片厚度

板片的设计厚度与其耐腐蚀性能无关,与换热器的承压能力有关。板片加厚,能提高换热器的承压能力。采用人字形板片组合时,相邻板片互相倒置,波纹相互接触,形成了密度大、分布均匀的支点,板片角孑 L及边缘密封结构已逐步完善,使换热器具有很好的承压能力。国产可拆式板式换热器最大承压能力已达到了 2.5 MPa。板片厚度对传热系数影响很大,厚度减小 0.1mm,对称型板式换热器的总传热系数约增加 600W/(m ·K),非对称型约增加 500 W/(m ·K) 。在满足换热器承压能力的前提下,应尽量选用较小的板片厚度。

② 提高对数平均温差

板式换热器流型有逆流、顺流和混合流型 (既有逆流又有顺流 )。在相同工况下,逆流时对数平均温差最大,顺流时最小,混合流型介于二者之问。提高换热器对数平均温差的方法为尽可能采用逆流或接近逆流的混合流型,尽可能提高热侧流体的温度,降低冷侧流体的温度。

③ 进出口管位置的确定

对于单流程布置的板式换热器,为检修方便,流体进出口管应尽可能布置在换热器固定端板一侧。介质的温差越大,流体的自然对流越强,形成的滞留带的影响越明显,因此介质进出口位置应按热流体上进下出,冷流体下进上出布置,以减小滞留带的影响,提高传热效率。

2.2降低换热器阻力的方法

提高板问流道内介质的平均流速,可提高传热系数,减小换热器面积。但提高流速,将加大换热器的阻力,提高循环泵的耗电量和设备造价。循环泵的功耗与介质流速的 3次方成正比,通过提高流速获得稍高的传热系数不经济。当冷热介质流量比较大时,可采用以下方法降低换热器的阻力,并保证有较高的传热系数。

① 采用热混合板

热混合板的板片两面波纹几何结构相同,板片按人字形波纹的夹角分为硬板 (H)和软板 (L),夹角 (一般为 120。左右 )大于 90。为硬板,夹角 (一般为 70。左右 )小于 90。为软板。热混合板硬板的表面传热系数高,流体阻力大,软板则相反。硬板和软板进行组合,可组成高 (HH)、中 (HL)、低 (LL)3种特性的流道,满足不同工况的需求。

冷热介质流量比较大时,采用热混合板比采用对称型单流程的换热器可减少板片面积。热混合板冷热两侧的角孔直径通常相等,冷热介质流量比过大时,冷介质一侧的角孑 L压力损失很大。另外,热混合板设计技术难以实现精确匹配,往往导致节省板片面积有限。因此,冷热介质流量比过大时不宜采用热混合板。

② 采用非对称型板式换热器

对称型板式换热器由板片两面波纹几何结构相同的板片组成,形成冷热流道流通截面积相等的板式换热器。非对称型 (不等截面积型 )板式换热器根据冷热流体的传热特性和压力降要求,改变板片两面波形几何结构,形成冷热流道流通截面积不等的板式换热器,宽流道一侧的角孑 L直径较大。非对称型板式换热器的传热系数下降微小,且压力降大幅减小。冷热介质流量比较大时,采用非对称型单流程比采用对称型单流程的换热器可减少板片面积 15% 一 3O% 。

③ 采用多流程组合

当冷热介质流量较大时,可以采用多流程组合布置,小流量一侧采用较多的流程,以提高流速,获得较高的传热系数。大流量一侧采用较少的流程,以降低换热器阻力。多流程组合出现混合流型,平均传热温差稍低。采用多流程组合的板式换热器的固定端板和活动端板均有接管,检修时工作量大。

④ 设换热器旁通管

当冷热介质流量比较大时,可在大流量一侧换热器进出口之问设旁通管,减少进入换热器流量,降低阻力。为便于调节,在旁通管上应安装调节阀。该方式应采用逆流布置,使冷介质出换热器的温度较高,保证换热器出口合流后的冷介质温度能达到设计要求。设换热器旁通管可保证换热器有较高的传热系数,降低换热器阻力,但调节略繁。

⑤ 板式换热器形式的选择

换热器板间流道内介质平均流速以 0.3~ 0.6m/ s为宜,阻力以不大于100 kPa为宜。根据不同冷热介质流量比,可参照表 1选用不同形式的板式换热器,表中非对称型板式换热器流道截面积比为 2。采用对称型或非对称型、单流程或多流程板式换热器,均可设置换热器旁通管,但应经详细的热力计算。

2.3橡胶密封垫材质及安装方式

① 材质的选择

水一水换热器中,冷热介质对橡胶密封垫均无腐蚀性。选用橡胶密封垫材质的关键是耐温和密封性能,橡胶密封垫材质可按文献选用。

② 安装方式的选择

橡胶密封垫常用安装方式为粘接式、卡扣式。粘接式是在换热器组装时,将橡胶密封垫用胶水粘接在板片密封槽内。卡扣式是在换热器组装时,利用橡胶密封垫和板片边缘的卡扣结构,将橡胶密封垫固定在板片密封槽内。由于卡扣式安装工作量很小,换热器拆卸时橡胶密封垫损坏率低,而且不存在胶水中可能含有的氯离子造成对板片的腐蚀,因此使用较多。

2.4合理选用板片材质

不锈钢板片可能产生腐蚀失效的现象有点蚀、缝隙腐蚀、应力腐蚀、晶间腐蚀、均匀腐蚀等,应力腐蚀的发生率较高。

(0)

相关推荐

  • 【HETA】板式换热器热力计算

    热力计算的目的在于使所设计的换热器在服从传热方程式的基础上能够满足热负荷所应具有的换热面积.传热系数.总传热系数.平均温差等综合方面的计算. 一:总传热系数确定途径 确定总传热系数的途径在设计计算板式 ...

  • 【HETA】板式换热器选型计算的方法及公式

    前两期我们主要分享了板式换热器的原理.结构及应用,今天我们再来深入探讨下板式换热器选型计算及公式. 一:关于板式换热器的几个公式 (1)求热负荷Q (2)求冷热流体进出口温度 (3)冷热流体流量 (4 ...

  • 【HETA】板式换热器传热分析

    之前我们详细分析了板式换热器的热力计算.流动阻力计算,今天我们就来详细介绍下板式换热器的传热过程. 在板式换热器的传热过程中,有无相变对传热有重要影响,流体的流动状态.流动方向.流量大小.流程组合也影 ...

  • 【最新成果】基于智能算法的超材料快速优化设计方法研究进展

    超材料是由亚波长单元结构按照周期性或准周期性等特定的空间分布序列构成的人工复合材料或结构,可对电磁波的幅值.相位.极化等特性进行灵活调控.作为调控电磁波的重要手段之一,超材料在通信.隐身.电子对抗等领 ...

  • 干货‖面向整车性能分解技术的多目标系统优化设计方法

    干货‖面向整车性能分解技术的多目标系统优化设计方法

  • 基于整车工况的电动汽车动力总成系统效率优化设计方法

    作者:刘祥环丨EDC电驱未来  本文提出了一种由整车参数和工况要求的电动汽车动力总成设计方法,使电机.电控及减速器的高效区间与整车工况高度重合,有效地提升了动力总成系统的综合效率.通过基于整车工况效率 ...

  • 385 优化设计方法-发展

    385 优化设计方法-发展 数据评估 用于优化设计的已知数据的质量是取得高水平的优化成果的关键(尤其对基于数据分析的优化模型方法). 数据评估即是分析已知数据的数量和分布是否合理,主要工作包括已知数据 ...

  • 384 优化设计方法-求解

    384 优化设计方法-求解 背景 拟合确定优化模型中的常系数后,就可以用优化模型求解使目标实现最佳值的变量参数. 求解优化模型的方法有多种,如求偏导法.直接搜索法等. 求偏导法 设某优化模型拟合常系数 ...

  • 382 优化设计方法-拟合-最小二乘法

    382 优化设计方法-拟合-最小二乘法 背景 确定优化模型后,就可以利用已知数据对模型中的待定常系数进行拟合确定. 已知数据可为软件计算数据,也可为实验数据. 基于数据分析建立的优化模型,已知数据的质 ...

  • 381 优化设计方法-模型

    381 优化设计方法-模型  背景 优化模型就是建立目标与变量之间的数学关系,数学关系可以是函数,也可以是其他形式. 建立了优化模型,就可以计算实现目标最佳的各变量值.各变量对目标的影响灵敏度和影响规 ...

  • 379 优化设计方法-变量

    379 优化设计方法-变量  背景 装置或过程的性能指标或优化目标通常受多个因素(几个甚至几十个变量参数)影响,优化的目的是确定这些变量取什么值时目标可达到最佳值. 优化过程中并不需要对各个影响目标的 ...

  • 377 优化设计方法-技术方案

    377 优化设计方法-技术方案 背景 在装置或过程优化设计中,通常是基于参数的优化,即基于材料参数.结构参数.操作参数等的优化,但实际研究中,还需考虑技术方案的优化,且技术方案的优化是更深层次.更根本 ...