汽温是机炉安全经济运行所必须监视与调整的主要参数之一,由于影响汽温的因素多,影响过程复杂多变,调节过程惯性大,这就要求汽温调节应勤分析、多观察,树立起超前调节的思想。在机组工况发生变化时,应加强对汽温的监视与调整,分析其影响因素与变化的关系,摸索出汽温调节的一些经验,来指导我们的调整操作。下面,我们对一些典型工况进行分析,并提出一些指导性措施。由于汽温变化的复杂性,大家在应用过程中要结合实际遇到的情况学会灵活变通,不可生吞活剥。
1 锅炉机组运行中,应注意调整过热蒸汽温度,主蒸汽温度应保持在485±5℃。2 汽温变化时,应相应调整减温水量,调整时幅度要小,严禁猛加猛减减温水,做到勤观察、勤调整,防止汽温大幅度波动及减温器损坏。3 前后减温器应均匀投入,严禁只投入一台减温器运行。4 当汽温投入自动调节时,应密切监视汽温变化,如锅炉机组异常或自动调节失灵时应将自动调节切换为手动调节。汽温调节可以分为烟气侧调整、蒸汽侧的调整,烟气侧的调节过程惯性大;而蒸汽侧的调节相对比较灵敏。因此正常运行过程中,应保持减温器具有一定的开度,一般应大于7%;如果减温器已经关完或开度很小时,应及时对燃烧进行调整(可适当加大风量,或设法使火焰中心上移),使汽温回升,减温器开启,在吹灰过程中出现汽温低时,应先停止吹灰;使汽温回升稳定后再考虑是否继续吹灰。如果各级减温器开度均比较大时(若大于60%),同时也应从燃烧侧调整,或对炉膛进行吹灰,以关小各级减温器,使其具有足够的调节余量。锅炉圈【 ID:cfb12315】分享锅炉知识,笑傲技术江湖!电厂锅炉运行必备公众号,运行调整、现象分析、事故处理、技术资料,一网打尽!总之,在机组正常运行时,各级减温器后的温度在不同工况下是不相同的。应加强对各级减温器后温度的监视,并做到心中有数,以便在汽温异常时作为调整的参考。避免汽温大幅度波动。1、机组滑停以前必须对锅炉进行一次全面吹灰,以关小减温器,可以使汽温在下滑过程中较好控制,使滑停过程顺利进行。2、滑停过程中应尽量依靠减弱燃烧来使汽温下滑,不宜采取开大减温水的方法来下滑汽温,如汽温下降速度较慢或居高不下时,可以加大下层磨的出力减小上层磨的出力,或者停运上层磨,减少磨煤机的运行台数。另一方面可以适当的开大上排二次风档板,关小下层二次风档板的方法使汽温下滑。3、滑停过程中,应尽可能的保持火嘴集中运行,使燃烧稳定。停磨前应先将磨的煤量减至最小,再停止磨煤机运行。停磨后应适当加大其余磨的出力,保持总磨煤量小幅度变化,以防止汽温下降速度过快。4、滑停过程撤油应逐支撤出,不允许一次多支撤出,防止汽温下降速度超限。5、正常情况下,滑停至给水主、付阀进行切换时各减温水调门及总门应该已经全关。如果由于操作不当, 至给水主、付阀进行切换时各减温水调门及总门仍在开启状态压制汽温时,我们应考虑暂缓减负荷,通过燃烧侧调整或利用随着时间延续炉膛蓄热的减少降低汽温,关闭减温水后再切换。防止由于切换时给水压力的突增 ,导致减温水流量突增,使汽温产生突降(低负荷下蒸汽流量很小,减温水量稍增就可能造成汽温突降,因此,在负荷越低的情况下使用减温水一定要小心)。1、对于打过水压后的锅炉,由于过热器及再热器中存着较多的积水,为了使汽温与汽压相匹配,建议在点火前全开过热器及再热器,主、再汽管道所有疏水门,进行充分疏水;点火后及时开启高旁、低旁阀,使过、再热器中的积水及时排走。保证过、再热汽温与压力的匹配关系。2、对于极热态机组,当汽机调跳闸,锅炉灭火后,应立即关闭所有减温水调门及总门,并开启排汽电动门或旁路门(汽机允许条件下),开启过、再热器疏水门。减少过、再热汽温的下降,为短时间恢复作好准备。锅炉在点火前尽量开大旁路门降压,吹扫完毕后应立即点火,以减小炉膛热损失,保持较高的火焰中心高度,并保持较高的氧量值,以使汽温尽快达到冲转参数。3、在机组启动初期低负荷时,投入减温水时,应注意一级减温器后的温度以及事故喷水后的温度应高于对应的过、再热汽压力下的饱和温度,以防过、再热器积水振动。4、滑参数启动过程中,付阀切换为主阀后,给水泵转速下降会使减温水压力降低,汽温上升速度加快。如果在主付阀切换后短时间内启首台磨,会使汽温上升速度更快,故建议在启动过程中,主付阀未切换以前,尽量不要投减温水,如汽温上升速度过快时,最好采用调整燃烧的办法来调整汽温。启首台磨时为了减小对汽温影响程度,可以采用切换油枪的办法或调整风量的办法来弥补。变工况时气温波动大,影响因素众多,值班员应在操作过程中分清主次因素,对症下药,及早动手,提前预防.必要时采取过调手段处理,不可贻误时机,酿成汽温事故. 变工况时汽温的变化主要是锅炉的燃烧负荷与汽轮机的机械负荷不匹配所造成的。一般情况下,当锅炉的热负荷大于汽轮机的机械负荷时,汽温为上升趋势,两者的差值越大,汽温的上升速度越快。因此在变工况时,应尽量的保持锅炉的热负荷与汽机的机械负荷相匹配。下面对几种常见情况分析如下:正常加负荷时,在调门开度保持不变时,当燃烧加强后,蒸汽侧的蒸发量要滞后于燃烧侧的热负荷的加强,对于过热器来说,由于蒸发量的逐渐增加,对汽温来说还有一定的补偿能力。而对于再热器则没有这种补偿能力。因此在加负荷过程中再热汽温的上升速度要比过热汽温的上升速度快。这时我们可以采用开大汽轮机调门的办法,或适当开启减温水的办法来调节汽温。减负荷过程与此相反。快速减负荷是指机侧由于某种原因使汽轮机调门迅速关小。根据前面的分析可得,过再热汽温的上升速度是比较快的。因此,在开大减温水的同时,应根据负荷减少情况打掉1~2台磨煤机(正常次序应该是在决定快减负荷时首先打磨 ),在旁路投运正常情况下,可先开启旁路(此时应注意旁路减温水情况,防止对再热汽温造成冲击),或用开启向空排汽的办法来控制汽温。开排汽时应注意水位变化。磨煤机启动时,相当于燃烧侧负荷突然加强,因此过再热汽温一般为上升趋势,并有可能超温。故在启动磨煤机以前可以先适当的降低汽温,启磨后适当的降低其它磨的出力,保持总煤量在小范围内变化,并注意风量的调整(在启磨前应先适当的增加风量,对于启磨所增加的煤量,风量无法迅速按比例增加),防止缺风运行,保持氧量在4~6%范围内。高加解列后由于给水温度降低,要维持蒸发量,就必须增加燃料量,故过热汽温为上升趋势。但由于高加解列后Ⅰ、Ⅱ、Ⅲ段抽汽要进入汽轮机做功,会使机组负荷突然增加,尤其是在高负荷时,有可能使锅炉超压,安全门动作,故此时不宜加煤量,相反还应适当减小燃料量,待负荷和压力下降后再加燃料量。同时,应加强对过再热汽温的调整,以防超温,投入高加时应缓慢投入,以防产生较大的扰动。高加解列后对再热汽温的影响与过热汽温有所不同,由于抽汽量减少,使再汽压力升高流量增大,在燃烧还未变化时,再热汽温暂时下降(约5-10℃),但随着机组工况趋于稳定,再热汽温随即会迅速上升,监盘人员要做好预想工作,及时进行调整。由于再热汽的比热相对于过热汽要小,且补偿能力差,故在负荷以及流量发生变化时,易引起再热汽温的大幅度波动,比较难控制。因此,在启、停磨煤机以及加减负荷时,应加强对再热汽温的监视与调整,并对有预见性的变化可以进行适当的超前调整。再热汽温的调整主要采用燃烧器摆角进行调温,微量减温调节为辅,并设有事故减温。因此,再热汽温的调节不能单纯的依靠减温水进行调节。另外,我们还可以通过改变燃烧侧风煤配比的办法来调整再热汽温。例如,我们可以通过改变各磨煤机的出力(在总煤量不变时),各二次风的配比等办法来改变火焰中心高度,以达到调节再热汽温的目的。目前,再热汽温的自动调整特性较差,故在再热汽温投自动时应加强对再热汽温的监视。如自动调整特性呈发散型时应立即改为手动调整,并及时联系热工进行处理。在工况变动较大时,应解列再热汽温自动,进行手动调整。直流锅炉运行时,为维持额定汽温,锅炉的燃料量B与给水流量G必须保持一定的比例。若G不变而增大B,由于受热面热负荷q成比例增加,热水段长度Lrs和蒸发段长度Lzf必然缩短,而过热段长度Lgr相应延长,过热汽温就会升高;若B不变而增大G,由于q并未改变,所以(Lrs+Lzf)必然延伸,而过热段长度Lgr随之缩短,过热汽温就会降低。因此直流锅炉主要是靠调节煤水比来维持额定汽温的。若汽温变化是由其他因素引起 (如炉内风量),则只需稍稍改变煤水比即可维持给定汽温不变。直流锅炉的这个特性是明显不同于汽包锅炉的。对于汽包锅炉,由于有汽包,所以煤水比基本不影响汽温。而燃料量对汽温的影响,也由于蒸汽量的相应增加,因而影响是不大的。因此,直流锅炉都是用调节煤水比作为基本的调温手段,而不像汽包锅炉那样主要依靠减温水。否则,一旦燃烧率与给水量不成比例,喷水量的需求将是非常大的。机组高压加热器因故障停投时,锅炉给水温度就会降低。若给水温度降低,在同样给水量和煤水比的情况下,直流锅炉的加热段将延长,过热段缩短(表现为过热器进口汽温降低),过热汽温会随之降低;再热器出口汽温则由于汽轮机高压缸排汽温度的下降而降低。因此,当给水温度降低时,必须改变原来设定的煤水比,即适当增大燃料量,才能保持住额定汽温。这个特性与自然循环汽包锅炉也是相反的。在煤水比不变的情况下,炉膛结焦会使过热汽温降低。这是因为炉膛结焦使锅炉传热量减少,排烟温度升高,锅炉效率降低。对工质而言,则1kg工质的总吸热量减少。而工质的加热热和蒸发热之和一定,所以,过热吸热(包括过热器和再热器)减少。但再热器吸热因炉膛出口烟温的升高而增加,故过热汽温降低。对于再热汽温,进口再热汽温的降低和再热器吸热量的增大影响相反,所以变化不大。对流式过热器和再热器的积灰都不会改变炉膛出口烟温,而只会使相应部件的传热热阻增大,因而传热量减小,使过热汽温和再热汽温降低。在调节煤水比时,若为炉膛结焦,可直接增大煤水比;但过热器结焦,则增大煤水比时应注意监视水冷壁出口温度,在其不超温的前提下来调整煤水比。当增大过量空气系数时,炉膛出口烟温基本不变。但炉内平均温度下降,炉膛水冷壁的吸热量减少,致使过热器进口蒸汽温度降低,虽然对流式过热器的吸热量有一定的增加,但前者的影响更强些。在煤水比不变的情况下,过热器出口温度将降低。过量空气系数减小时,结果与增加时相反。若要保持过热汽温不变,也需要重新调整煤水比。随着过量空气系数的增大,对流式再热器的吸热量增加,对于显示对流式汽温特性的再热器,出口再热汽温将升高。当火焰中心升高时,炉膛出口烟温显著上升,再热器无论显示何种汽温特性,其出口汽温均将升高。此时,水冷壁受热面的下部利用不充分,致使1kg工质在锅炉内的总吸热量减少,过热汽温降低。由上述分析可见,直流锅炉的给水温度、过量空气系数、火焰中心位置、受热面沾污程度对过热汽温、再热汽温的影响与汽包锅炉有很大的不同。有些影响是完全相反的。对于直流锅炉,上述后四种因素的影响相对较小,且变动幅度有限,它们都可以通过调整煤水比来消除。所以,直流锅炉只要调节好煤水比,在相当大的负荷范围内,过热汽温和再热汽温均可保持在额定值。通过研究影响汽温变化的因素及影响趋势,我们不但可以在扰动发生时,提前调整和干预,也可以根据预知扰动引起汽温变化的幅度速度提前依据各个因素的影响大小加以适当的运用作为调整手段。下面就将常用的调整手段及适用工况做以归纳,以供大家参考:减温水是调节主汽、再热汽温度最直接、最有效的方法。但是,减温水投入的原则是尽量不投或少投,更不能将减温水作为汽温调节的唯一手段。正常情况下,应通过燃烧调整、风量调整、合理安排喷燃器运行方式等手段,使炉内燃烧工况达到最佳状态。锅炉汽压、汽温、炉膛压力等参数稳定,管壁不超温汽温不超限,减温水只做为锅炉燃烧工况出现较大扰动时防止汽温突变而采取的一种临时控制手段。第一、减温水喷入量的大小一定要考虑到能否被完全汽化的问题,防止水塞造成爆管,水冲击管道振动等异常的发生,尤其是在锅炉启停过程中,由于蒸汽与减温水温差小,若喷水量过大,极有可能出现减温水不能被完全汽化的情况。预防措施措施是控制减温水的流量和调整幅度,关注二级减温水后蒸汽温度变化趋势和速率,及时控制水量。一二级减温水使用的同时要关注其喷入点前后几个点温度,保证其有一定的过热度。第二是汽温的调整要有超前控制意识,针对当时运行工况结合上面分析的汽温影响因素提前做出预判断,从而提前控制减温水量。所以用减温水调节汽温的关键是对当时锅炉整个燃烧工况对汽温变化趋势影响的方向和幅度有一个正确的判断,用这个基本的判断指导减温水调节的方向和减温水量,而不是单纯的根据当前汽温的变化进行简单调整。第三,掌握减温水量调节幅度的大小,一般情况下,减温水调节应超前、缓慢、小幅度进行。在用减温水调节气温的同时应结合其他方法进行调整,尽量避免减温水量的大幅度波动。因为减温水量的大幅度波动会影响到汽包水位、主汽压力波动(当减温水量突然增加时,由于减温水的汽化蒸汽流量增加,在负荷不变即汽机调门开度不变时,必然造成主汽压力升高),而主汽压力的波动又影响锅炉燃料量的变化,如此反复变化就会进入一个恶性循环,最终导致整个锅炉燃烧、参数都不稳定。主要用来调整再热汽温,鉴于再热器减温水对机组效率影响较大,所以,烟气挡板将作为调节再热汽温的主要手段。用烟气挡板调节再热汽温时应注意挡板不能关得太小导致烟气挡板上积灰,一方面造成烟气挡板操作不动,另一方面,在开启时会造成挡板上积灰突然全部落下堵塞烟道,锅炉冒正压。调整原则是在保证再热器不投减温水的情况下尽量开大烟气挡板(火电厂技术联盟出品)。主要通过制粉系统即喷然器运行方式(包括调整上下排磨的煤量分配)以及燃尽风的使用来实现,但在改变火焰中心高度时应注意燃烧稳定,否则就不能用改变火焰中心位置调节汽温。在保证燃烧稳定的前提下,适当调整总风量,使氧量在正常范围的上下限运行,也可以用来调节汽温。由于主再热汽温均为对流特性,因此,增加风量会使汽温升高,减小风量会使汽温降低。在用风量调整汽温时应注意,由于风量调整对燃烧影响较大,风量调整可能会引起燃烧的变化,因此,风量幅度不能太大,原则是锅炉低负荷、煤质差时尽量维持小风量运行确保燃烧安全,若低负荷、煤质好锅炉燃烧好而汽温低时,可适当增加风量以提高汽温。高负荷时主汽温度、再热汽温一般都可以达到正常值,按正常的氧量曲线配风即可。夏天环境温度高而高负荷运行时,有可能出现“缺风”现象,可适当增加总风量保证燃烧完全。保持受热面清洁对主再热器包括水冷壁的安全运行有利,有利于经济运行,同时有利于汽温的调整和管壁温度的控制。6. 经常性查堵漏风,加强炉底水封的检查和维护,防止因漏风引起的汽温变化。7. 当出现异常工况导致汽温大幅度变化时,可果断采用加强或减弱燃烧、快速调节减温水等方法抑制汽温变化幅度防止异常事故的发生。
正常运行时影响锅炉汽温的因素和调整方法
1.燃烧强度的影响:当负荷变化速率快,主汽压与给定压力偏差较大时,此时加煤或者减煤量大,燃烧强度变化明显,直接导致主再热汽温大幅波动。2.火焰中心位置影响:炉膛火焰中心上移,出口烟温身高,由于过再热器分布在炉膛上部,因而吸收的热量增加(主要为对流换热)导致主再热气温升高,常见为磨煤机切换为上层磨运行时。3.煤质的影响(使汽温上升,下降因素都有,看哪个因素影响大,一般为上升):煤质差即发热量低,挥发分低,灰分水分含量高,要维持相同蒸发量就需要的燃料量相应增加,风量增加,造成烟气热容积增大,流经对流换热器的烟气量和流速增加,使汽温上升。同时,因煤质差,着火点推迟,造成火焰中心的提高,使汽温上升。当煤质较好时,则会因为相同负荷下燃烧产生的烟气量少,汽温偏低。值得注意的是:当煤质的发热量高,但挥发分低时(如无烟煤或则挥发分低的贫煤),由于前期在炉膛内不能完全燃烧,仍有部分会被烟气携带至过热器区域燃烧,可能会造成主再热汽温升高,因此运行中应注意每种的变化情况,判断其对汽温的影响趋势,提前做好调整。4.煤粉细度的影响:粗媒,在炉膛燃尽的时间增加,火焰中心上移,炉膛出口烟温升高,汽温上升。细媒,在炉膛内即可实现完全燃烧,水冷壁吸热增加,过热器吸热相应减少,主再热汽温也就下降。5.磨出口温度的影响:出口温度高低直接决定入炉煤粉着火时间点,着火较晚则汽温较高,反之则下降;同时提高煤粉的温度便于研磨,磨煤机不易堵磨。6.二次风配风的影响:锅炉燃烧需要足够的风量,煤量较多时则需要及时开大二次风门,合理配风、保证合适的风箱差压便于燃烧,从而有利于控制汽温。7.运行磨入口一次风压的影响:磨煤机入口风压偏高,则瞬间增加入炉煤量,会导致燃烧剧烈汽温上涨,同时火焰中心较高。相反,如果主再热汽温较高,可以暂时通过降低运行磨入口风压,短时减少入炉煤量,从而遏制燃烧的强度,也可以降低主再热汽温;汽温控制后应及时将磨运行风压加回,防止堵磨和燃烧不稳等二次影响。8.风量大小的影响:风量直接影响烟气量大小,特别对流换热,烟气量上升,汽温上升。
1.过热度的影响:过热度高,给水量减少,则主再热汽温必然升高。2.负荷的影响:加负荷时汽机调门开大,主汽压下降,煤量增加过多,锅炉燃烧暂时跟不上,要根据情况预控,防止汽温大幅上升。同理,减负荷要提前干预减温水等,防止汽温下降过快。
当受热面积灰或者结焦,吸热能力急剧下降(灰的换热系数是钢的1/40),因此,不同换热面积灰或者结焦对汽温的影响不同,一般水冷壁积灰结焦,其吸热量就会下降,而这些热量会由烟气携带至过再热器区域,而流经过再热器中的蒸汽量不变,所以过再热汽温必然上升。而进行锅炉吹灰后,水冷壁清洁了,吸热量增加,后期吸热较少,汽温自然下降。同理,过热器、再热器吹灰后汽温会升高,减温水量相应增大,吹灰效果越好,汽温变化越明显(这里分析的汽温变化是在本区域吹灰结束后的一个总体变化趋势)。实际吹灰过程中,往往出现吹哪块区域而汽温下降的情况。1、吹灰是个漫长的过程,不可能吹一个吹灰器就能表现出汽温特性2、进行吹灰时,由于吹灰蒸汽温度低于烟气温度,可能造成被吹灰区域的烟温烟气流过降低而表现出本侧汽温降低,随着吹灰的不断进行,越来越多的受热面清洁,汽温会越来越高,减温水量慢慢会增加,所以吹灰时要根据所吹区域掌握汽温的变化趋势,及时调整减温水量,避免汽温突变。
压力升高时,饱和温度随之升高,水变为蒸汽所需热量增加,在燃料量不变的情况下,锅炉蒸发量瞬间减少,即通过过热器的蒸汽量减少,使过热器入口的饱和温度上升,导致汽温上升。反之,压力下降,汽温下降。但压力变化对汽温的影响只是暂时的过程,随着压力降低,燃烧量及风量会增加,汽温会上升甚至上升幅度很大,所以加减负荷时注意主汽压的变化。一级减温水量的影响:一减用于保护屏过,防止屏过管壁超温,同时对主汽温进行粗调。二减用于对主汽温的细调,由于二减对汽温变化影响较快、较大,运行中应避免大幅操作,防止汽温突升突降。再热器减温水投入式应注意观察减温器后温度有一定过热度,不同压力下所对应的饱和温度不一样,所以加减负荷、切换磨等操作时应有预见性的提前敢于减温水及摆角和过热器同时进行,否则很难控制。由于再热器减温水投入后对机组效率降低明显(相当于增加了低品质蒸汽进入中压缸做功的份额),所以尽量不投或则少投减温水时间,尽量采用燃烧调整和燃烧器摆角调整。
1、合理的水煤比,锅炉燃烧稳定、给水跟踪正常是汽温控制的主要方式。2、减温水量的大小一定要考虑能否被完全汽化的问题,防止水塞造成爆管、水冲击,管道振动等情况发生,尤其是在锅炉启停过程中,由于蒸汽与减温水温差小,若减温水量过大,极有可能出现减温水不能完全被汽化的情况。预防措施是控制减温水的流量和调节幅度,关小二减后蒸汽温度变化趋势和速率,同事关注喷入点前后几个点温度,保证有一定的过热度。3、汽温的调整要有超前控制意识,针对当时的运行工况,结合我们所说的汽温影响因素提前做出预判,从而提前控制减温水量,所以用减温水调节汽温关键是对当时锅炉整个燃烧工况对汽温变化趋势的影响的方向和幅度有一个正确的预判,根据预判确定减温水调整法相和减温水量,而不是单纯的根据汽温的变化进行简单的调整。4、调整减温水应超前,缓慢小幅进行,并结合其他方法调整,尽量避免减温水量的大幅波动,从何影响主汽压力波动。而主汽压波动又影响燃烧量的变化,好比反复变化就会进入一个恶性循环,导致锅炉燃烧参数不稳定。汽温变化是由蒸汽侧和烟气侧两方面的因素引起的,因而对汽温的调节也就应从这两方面入手。从蒸汽侧入手调节汽温,即是通过改变蒸汽侧的吸热量来维持额定的汽温,目前多采用减温器来调节汽温。减温器一般置于高温段过热器与低温段过热器之间。常用的减温器有两种形式:表面式和混合式。表面式减温器采用给水来冷却过热器,当通过减温器的给水量增大,则进入高温段过热器的蒸汽温度就会下降;反之,当减少给水量时,蒸汽温度就会上升。混合式减温器是将给水或冷凝水直接喷入蒸汽,使过热器中过热蒸汽的热量一部分用于加热、蒸发喷人的水分,使蒸汽的温度降低。无论采用哪一种减温器来调节汽温,其操作调节都比较简单,只要根据汽温高低,适当开大或关小相应的减温水调节阀,以改变进入减温器的减温水量,即可达到调节过热汽温的目的。在锅炉运行过程中,操作人员应随时监视汽温的变化,平稳、均匀地调节阀门的开度,切不可大开大关,使汽温波动过大。从烟气侧调节过热汽温,就是改变过热器受热面的吸热量,通常是通过改变流经过热器的烟气量和排烟温度来实现的。在操作上,一般有两种方法:一是通过调节燃料量和送、引风量,改变燃烧强度来进行调节的。例如,当外界负荷减小时,汽压、汽温会同时升高,这时可减弱燃烧,使汽压、汽温同时下降。另一种方法是,当外界负荷不变,汽压较稳定而汽温偏低时,可采用加大引风量、调整二次风等措施来增加烟气流量,通过提高炉膛出口烟温来提高蒸汽汽温。
在一些大容量的机组中,喷水减温器后还有比较长的一段加热管道,锅炉能量传导给喷水后温度后,要经过较长一段时间波动状况才能反映到主汽温度,因而用串级调节系统比较好。在串级调节系统中,超前信号固然重要,但是喷水减温后还有很大一段受热面,主回路的调节作用也非常重要,所以,往往大部分电厂都采用主信号和超前信号作用稍微均衡的调节方式。
但是,也不排除一些机组喷水减温后受热面较短、或者超前信号与主信号之间的波动传递趋势时间间隔较短的情况。这个情况下,当燃烧扰动到来的时候,超前信号作用因为不是特别突出,故而大超前信号而带来的减温水流量的调节作用就较小,等到主信号进行调节的时候,就有可能造成调节滞后,使得温度波动比较大。解决办法就是:减弱主信号的作用,增强超前信号的作用。
因为烟风挡板调节再热的时候,势必会影响烟道内烟气的流动情况。烟气流动被烟风挡板干扰后,要先干扰主汽温度,然后才会干扰主汽温度的超前信号。这时候如果超前作用强、主信号作用弱,就有可能造成温度波动比较大。
所以,在加强超前作用的同时,还要管住延期扰动带来的主信号波动状况,综合衡量,才能够提高总体调节品质。
►2 导前微分调节系统
在一些小锅炉中,锅炉蓄热能力小,如果喷水减温和主信号之间受热面进一步缩短,超前信号和主信号波动间隔时间减小,用串级调节系统就有可能存在局限。这时候,导前微分调节系统的重要性可能会增强了。导前微分调节系统可以充分考虑超前信号带来的影响,因而,超前作用得以大大加强。但是,如果微分时间太短,会造成PID 输出频繁波动,实际运用过程中,要小心执行机构频繁动作,烧坏电机。
►3 带有超前信号微分功能的串级调节系统
如果在串级和导前微分作用之间不大容易取舍的话,我们可以综合两方面的特点,做一个带有超前信号微分功能的串级调节系统。也即用串级调节系统,但是对超前信号进行微分运算。在实际调试过程中,如果想要纯粹的导前微分功能,可以把副PID 设为纯比例作用;如果想要纯粹的串级系统,可以把微分参数设为0。当然还有第三种选择:导前微分串级调节系统。
燃烧干扰是主汽温度控制中最常见、最大、也是最难以消除的干扰。传统上,解决这个问题,需要把燃烧带来的干扰进行分类,大致有如下几类:①烟气流动干扰;②燃料量干扰;③煤质干扰;④制粉系统启停。
当然烟气流动干扰不仅仅与燃烧有关系,还有可能是烟风挡板开度的扰动、锅炉受管道蒸汽吹灰等因素,这里暂且不考虑其他因素。
有这么多影响因素,我们不能针对每一项扰动因素都制定一项应对策略。那样控制策略过于复杂,参数整定就非常麻烦,并且可能存在各扰动因素互相影响的情况,实际控制效果不见得就好。我们的目的是,在所有扰动因素中,寻找一个具有代表性的物理量。这个物理量既能代表各种扰动因素,又能够比喷水后汽温更能超前的反映汽温的变化趋势。
所有以上4 条其实都跟锅炉受热面热交换有关系。在不考虑蒸发量、给水量的时候,蒸汽吸热量的改变应该首先引起压力的变化。我们用汽包压力的微分代替锅炉能量变化的趋势。锅炉能量传递给锅热器的时候,首先要反映到汽包压力上,然后才会逐渐改变汽温。以汽包压力的微分作为主汽温度自动的前馈信号,做一个串级调节系统,取得良好的实际效果。
机组负荷干扰也会影响到汽温控制。负荷扰动也会影响到汽包压力,用汽包压力的微分作为前馈信号,对汽温控制有一定的效果,但是有些机组效果不大明显。如果一些机组因为负荷干扰使得主汽温度波动比较大的话,我们可以再增加一个前馈信号,用速度级后压力或者干脆用汽机负荷来参与控制。
需要注意的是,一定要考虑到负荷信号和蒸汽压力之间的关系。一般都认为两个都可作为正作用加入到温度控制的前馈中,这个看法可能存在些问题。具体应用过程中,大家可以对此予以关注,最终会取得不错的控制效果。
执行机构传动问题包括:执行机构存在空行程;执行机构存在回差;阀门线性不好;阀门线性随时间的推移改变甚至恶化。所有这些问题都可以用一个方案解决:加入减温水流量反馈。PID 调节的结果最终都去控制减温水,改变减温水流量,只要流量不改变,阀门就一直动作下去;如果阀门流量改变过大,就驱动执行机构回调。
参数整定是一个调节系统好坏的保证。
►1 串级调节系统的参数整定
要注意主副PID 之间的侧重关系。如果要加强主调的作用,可以增强PID1 的比例作用。
如果要强调超前作用,可以增强PID2 的比例作用。不管哪一种方法,PID2 的积分作用可以减弱甚至忽略。PID1 的积分作用应该比比例作用稍弱,以能消除静差为宜。
►2 导前微分的参数整定
注意微分时间的使用,可以消除因微分作用带来的执行机构的频繁波动。微分时间增大可以消除执行机构频繁动作,但是微分的超前作用会在一定程度上被削弱。微分时间减小,超前作用增强,但是执行机构可能会有抖动。需要在超前性和稳定性之间作一个综合衡量。
►3 带导前微分的串级调节系统
导前微分串级调节系统需要注意的是:PID 的测量值围绕在0 左右波动,不大容易进行曲线观察。我们可以在微分作用以后叠加一个常数,这个常数不参与运算,可以方便对曲线进行观察。
►4 带汽包压力微分前馈的调节系统的整定
如果汽包压力微分参数整定合适,该系统十分好用。需要注意的是,汽包压力微分已经进行了调节,喷水后温度前馈可能因二次调节造成震荡。这时候应该适当减弱副调作用。
►5 带减温水流量反馈的调节系统的整定
该系统的整定稍微特殊,下面一一列举。
流量系数:流量系数关系到流量反馈系统能不能投入的问题,所以很重要。流量系数过大,会造成副回路的PID 反复震荡;系数过小,会造成反馈不足。应该予以重视。
副调的积分时间:副调的积分时间我们可以设得很短,即积分作用设得很强。只要副调的PID输入e 不等于0,就要积分下去,直到e=0 为止。
副调的PID 死区:因为副调的积分作用非常强,那么就有可能使得执行机构不停地动作,从而烧坏电机。为此,我们可以给副调的PID 输入偏差设置死区,以抑制震荡。
如果这些措施在主汽温度中都能够得到施行,那么火电厂中间仓储锅炉的主汽温度控制会得到很大改善。总结起来,其实并不复杂。控制冲量共包括:主汽温度、喷水后温度、汽包压力、减温水流量、负荷这5 个信号也不一定全部使用,要看每台锅炉遇到什么情况。