TE||Refreshing reefs

1

导读

两片珊瑚海

本片段节选自《追逐珊瑚》

墙裂强烈推荐大家观看

1.Netflix原创纪录片《追逐珊瑚》(Chasing Coral )

2.BBC纪录片蓝色星球第二季第三集:珊瑚礁

2

音乐| 精读 | 翻译 | 词组

Refreshing reefs

让珊瑚礁重新焕发生机

本文英文部分选自经济学人Science and Technology版块

Accelerating evolution

加速进化

Mass die-offs are driving efforts to create hardier corals

珊瑚大规模死亡促使人们努力培育更顽强的品种

Selective breeding and genetic engineering are both possibilities

选择性培育和基因工程都是可行的

BY SOME estimates, half of the world’s coral has been lost since the 1980s. Corals are delicate animals, and are succumbing to pollution and sediment from coastal construction. Also to blame are sewage, farmland run-offand fishing, all of which favour the growth of the big, fleshy algae that are corals’ main competitors for space. (The first two encourage algal growth and the third removes animals that eat those algae.) But the biggest killer is warming seawater. Ocean heatwaves in 2015, 2016 and 2017 finished off an astonishing 20% of the coral on Earth. This is troubling, for countless critters depend on coral reefs for their survival. Indeed, such reefs, which take up just a thousandth of the ocean floor, are home, for at least part of their life cycles, to a quarter of marine species. Losing those reefs would cause huge disruption to the ocean’s ecosystem. So researchers are looking for ways to stop this happening.

据估计,上世纪80年代开始,世界上一半的珊瑚已经消失了。珊瑚这种动物很纤弱,沿海建筑的污染和沉积物极易造成它们死亡。此外,污水,农田径流污染和渔业过度捕捞也是杀死珊瑚的凶手。这三者都有利于与珊瑚争夺空间的主要对手—大型肉质藻类的生长。(前两者能促进藻类的生长,第三者能清除以这些藻类为食的动物。)然而,最大的杀手是温度不断升高的海水。2015、2016、和2017年,地球上有20%的珊瑚因海水温度升高而灭绝,令人震惊。情况令人不安,因为无数生物依附珊瑚礁而生存。实际上,珊瑚礁虽然仅占洋底面积千分之一,但确是四分之一海洋生物的栖息地,至少在这些生物生命周期的某个阶段是。珊瑚礁的消失会极大地破坏海洋生态系统。因此研究人员正在寻找各种方法阻止这种情况发生。

1. run-off:径流是指降雨及冰雪融水或者在浇地的时候在重力作用下沿地表或地下流动的水流。雨水或灌溉水流过农田表面后排出的水流,是农业污水的主要来源。农田径流中主要含有氮、磷、农药等污染物。

2. 珊瑚礁是指以造礁珊瑚为主体,所建造的大型钙质礁体,这个礁体能 抗拒海浪的搬动和侵蚀,钙质礁体之直径通常在数公尺以上,珊瑚礁的形 成是侵蚀和造礁两种力量互相拒抗的互动过程,当侵蚀作用大于造礁运 动,珊瑚礁就无法形成,即使已形成之珊瑚礁也会逐渐被破坏分解,这也是珊瑚礁及珊瑚礁生态系所以特别脆弱的原因,因为一旦侵蚀作用大于造 礁作用后,再大范围之珊瑚礁都会毁损,依附珊瑚礁生存的礁间生物、软件动物、棘皮动物、甲壳类动物、鱼类、贝类等就无法相互依存共生,整个珊瑚礁生态系的功能不存在,就会全面瓦解。

3.史蒂文·约翰逊在《伟大创意的诞生》一书开篇就描述了珊瑚礁的奇妙之处:虽然珊瑚礁仅占地球表面面积千分之一,但海洋生命种类约四分之一的物种都生长在珊瑚礁边。强烈建议阅读:创意从珊瑚礁开始

https://www.toutiao.com/i6387575229291430401/

One approach is to lower reef temperatures directly. In December Australia’s environment ministry said it would try doing just that. It has given a charity A$2.2m ($1.7m) to install large, solar-powered rotating blades on parts of the Great Barrier Reef, with the intention of drawing cooler water into that reef.

一种方法是直接降低珊瑚礁的温度。去年12月澳大利亚环境部就表示将尝试这种做法。它已经向一家慈善组织捐款220万澳元(170万美元),在大堡礁的部分地区安装大型的太阳能旋转叶片,以把冷水引入大堡礁。

Schemes to cool reefs in this way have, however, been criticised as hopeless at best and possibly even harmful. Colder water can absorb more carbon dioxide, and is therefore likely to be more acidic. That would damage reefs. A growing number of scientists therefore reckon that an entirely different approach to saving coral is needed. If oceans are changing faster than coral can adapt via the normal processes of evolution, why not, these researchers argue, work out ways to speed up such evolution?

然而,以这种方式冷却珊瑚礁的计划被认为是毫无希望的,甚至可能是有害的。水可以吸收更多的二氧化碳,因此可能使海水酸性更强。这将破坏珊瑚礁。因此,越来越多的科学家认为,需要一种完全不同的拯救珊瑚的方法。这些研究人员认为,如果海洋的变化速度快于珊瑚能够通过正常的进化过程来适应的速度,为什么不能够找到加速这种进化的方法呢?

Little breeders

One way to do this would be selective breeding. Most species of coral spawn on just one or two nights a year, a process regulated by the lunar cycle, the time of sunset and the temperature of the water. The sperm and eggs released during spawning meet and unite, and the results grow into larvae that search for places where they can settle down and metamorphose into the stone-encased sea-anemone-like polyps that are the adult form. In the wild, the meeting of sperm and egg is random. Some researchers, however, are trying to load the dice. By starting with wild specimens that have survived a period of heat which killed their neighbours, they hope to breed heat resistance into the offspring.

一种方法是选择性繁殖。大多数种类的珊瑚每年只在一两个晚上产卵,这是由月亮周期、日落时间和水温调节的过程。在产卵时释放的精子和卵子会合并结合在一起,结果变成了幼虫,寻找可以定居下来的地方,并将它们变成像石头一样的海葵,就像成年的珊瑚虫一样。在野外,精子和卵子相遇是随机的。然而,一些研究人员正在通过人工手段改变精子和卵子的结合过程。他们希望从那些在炎热中幸存下来的样本身上着手,希望能对后代产生耐热性。

This is the tack taken, for example, by Christian Voolstra of the Red Sea Research Centre in Thuwal, Saudi Arabia. He describes it as “making sure super papa and super mama meet and reproduce”. Corals bred in this way at the Hawaii Institute of Marine Biology, on Oahu, survive in water that is warm enough to kill offspring resulting from normal, random reproduction.

例如,位于沙特阿拉伯图沃的红海研究中心的Christian Voolstra就采取了这种策略。他将之描述为“确保超级爸爸和超级妈妈能相遇并且繁殖后代”。位于瓦胡岛的夏威夷海洋生物研究所用这种方式繁殖珊瑚,这些珊瑚能够在温暖的水域里生存,这一水温足以杀死自然、随机繁殖的珊瑚幼仔。

The reason corals die when the surrounding water gets too hot is that the microscopic algae and bacteria which live on and in their tissue, and are their main food sources, are sensitive to small changes in temperature. When stressed by heat these symbionts start producing dangerous oxidants. This causes the polyps to eject them, to ensure short-term survival. The reef thus turns ghostly white—a process called bleaching. Bleached coral is not dead. But unless the temperature then drops, the polyps will not readmit the algae and bacteria, and so, eventually, they do die.

当周围的水变得太热导致珊瑚死亡的原因是存在于它们组织中、并是它们的主要食物来源的微小的海藻和细菌对水温的细微变化很敏感。当受到高温的压力,这些共生体开始产生危险的氧化剂。这导致这些珊瑚弹出海藻和细菌,以获得短暂的生存。因此珊瑚礁变成幽灵般的白色-这一过程称为白化。白化的珊瑚并没有死。但是除非水温随后下降,否则珊瑚将不会重新接纳海藻和细菌,最终走向死亡。

Polyps that survive one such ordeal will, however, fare better if temperatures rise again. The second time around they have acclimatised to the change. Some species, indeed, can pass this resilience on to their offspring by a process called intergenerational epigenesis. The Hawaii Institute’s efforts to develop hardier corals thus include administering a near-death experience to them. Ruth Gates, the institute’s director, says the goal is to create reefs “designed to withstand the future”. The institute’s first such reef will probably be grown inside Biosphere 2, an enclosed ecosystem run by the University of Arizona.

然而,当环境温度再次升高时,曾在较高温度环境下幸存的珊瑚虫更易存活。此时,这些珊瑚虫已经适应了这种变化。部分种类的珊瑚甚至能够通过世代间的外遗传将耐热性遗传给后代。因此,美国夏威夷大学海洋生物研究所培育耐受力更高的珊瑚品种时,也会给珊瑚创设逼近珊瑚死亡临界点的环境。研究所所长Ruth Gates表示,研究旨在培育能够适应未来环境的珊瑚种。抱着这个目的,研究所的第一批珊瑚很可能会在生物圈二号内生长,生物圈二号是由亚利桑那大学负责的封闭式生态系统。

世代间的外遗传:

http://technews.cn/2018/03/11/the-generation-game-the-ramifications-of-a-new-type-of-gene/

生物圈二号:

http://www.ednchina.com/news/article/20170901Biosphere2

Another approach, taken by the Australian Institute of Marine Science (AIMS) in Queensland, is to crossbreed corals from different places, to create hybrid vigour. The results of such crosses are unpredictable, but some survive heat greater than either of their parents could cope with.

位于昆士兰州的澳大利亚海洋科学研究所采取了另外一种方法,即通过杂交不同区域的珊瑚,以此获得杂种优势。杂交结果很难预测,但是部分杂交的后代能够比母代能够耐受更高的温度。

The artificial breeding of corals is, though, constrained by their cyclical breeding habits, so researchers at the Florida Aquarium, on Tampa Bay, are trying to speed the process up. The operators of the aquarium’s “coral ark” nursery stagger lighting and temperature patterns to fool the animals into releasing their gametes on a day of the researchers’ choosing. This also permits the co-mingling of sperm and eggs that would not normally meet, thus allowing new varieties to be created. According to Scott Graves, the aquarium’s boss, half a dozen such varieties show most promise of heat resistance, but the team is generating thousands more, “just like a seed bank”, as a backup.

然而,人工培育的珊瑚受其周期性繁殖的培育习性所约束,所以位于坦帕湾的佛罗里达水族馆的研究者们一直努力加快这个进程。该水族馆的“珊瑚诺亚方舟”培育室的工作人员通过微调光线和温度的模式来“欺骗”这些生物在研究者选中的日子里释放他们的配子(译者注:精子及卵子)。这也意味着精子和卵子的结合不会如同通常的那样遇见,这将产生许多新的变化。根据水族馆的老板Scott Graves所说,大约有六个这样的变化就能显示出耐热性,但是团队还在生成数千个更多的(样本),以作备份。

A polyp’s fate is tied so closely to the algae and bacteria which live in its tissues that, as Dr Gates puts it, it is best to think of the whole thing as “a consortium of organisms”. This is why scientists at AIMS are keen also to produce algae that withstand higher temperatures without releasing the oxidants that lead coral to kick them out. They are doing so using a process which Madeleine van Oppen, a researcher at the institute, calls “directed laboratory evolution”. In the past few years her team have grown more than 80 generations of algae, repeatedly culling those organisms most susceptible to heat stress and also to acidification, another curse of a world with more carbon dioxide around than previously. The resulting algae release fewer toxins and photosynthesise better in warm water than do their wild brethren.

正如盖茨博士所说,珊瑚虫的命运和生活在身上的藻类及微生物紧紧联系在一起,最好把它当成一个“有机整体”。这也是为什么澳大利亚海洋科学研究所的科学家们也一直努力不用氧化剂,而是产生更多耐热海藻来引导珊瑚来驱逐他们。他们采用一些,被研究者Madeleine van Oppen称作“直接实验室进化”的步骤。在过去的几年里,她的团队已经培育了超过八十代的海藻,不断地筛选那些对热和对酸(世界的另一个威胁)都非常敏感的生物。相比于野生海藻,人工培育的海藻释放出的毒素更少,而且在温水里的光合作用也更好。

Curiously—and unfortunately—Dr van Oppen’s super-algae seem to lose their newfound prowess once they colonise a coral. Andrew Baker of the University of Miami also noticed this, and is trying to do something about it. After studying the genetic codes of algae that did well in warm waters, his team began injecting those types of algae into the tiny and tentacle-encircled mouths of polyps. As Dr van Oppen’s results would predict, the polyps seemed to benefit little from this artificial inoculation. In follow-up work, however, Dr Baker has found that after the trauma of bleaching, polyps do extend a preferential welcome to algae that have greater levels of heat tolerance. His team are thus now using special lights to bleach corals. Polyps “stress hardened” in this way will be planted on wild reefs in coming months.

好奇并且遗憾的是,一旦Van Oppen博士的超级海藻移居到珊瑚上时, 似乎就失去了这种他们新发现的能力。迈阿密大学的Andrew Baker 同样注意到了这点,并且试图采取措施。在研究了在温水里表现良好的海藻的基因信息之后,他的团队开始尝试把那些海藻注入到小且触角环绕的珊瑚虫中。正如Van Oppen 博士的研究成果所预测的那样,珊瑚虫似乎并不能从这种人工的接种中受益。然而,在后续的研究中,Baker博士发现在经历过漂白所带来的负面影响后,珊瑚虫确实变得更容易接受具有更高耐热性的海藻。 因此,他的团队目前在运用特殊的光来白化珊瑚。在接下来的几个月中,珊瑚虫的这种“遇到压力变硬”的特性在礁石上会得到验证并体现。

Coral larvae swim around a lot before choosing a spot to live. Only when they encounter a suitable place (the local bacteria seem to be the deciding factor) will they settle down and grow into polyps. Kristen Marhaver of CARMABI Research Station in Curaçao, a Dutch Caribbean island, is studying this. She is classifying corals’ reactions to myriad types of bacteria, so that “probiotic” bacterial mixtures which increase larvae settlement and survival can be prepared. Next year her attention will turn to how these probiotics can be applied to coral in the wild—perhaps as a gel.

珊瑚幼虫在选择生存地点之前会不断地游。只有当它们遇到一个合适的地方(当地的细菌似乎是决定性因素),它们才会安定下来,长成珊瑚虫。来自荷兰加勒比库拉索岛CARMABI研究站的Kristen Marhaver正在研究这个课题。她正在将珊瑚对各种细菌的反应进行分类,从而分析哪种“益生菌”的细菌混合物可以增加幼虫的附着率和存活率。明年,她将把注意力转向如何将这些益生菌(也许是一种凝胶)应用于野生珊瑚上。

The shock of the new

新爆料

A decade ago, sequencing 1m DNA base pairs cost a few thousand dollars. Today the same money buys 100bn base pairs. The consequent flood of data is helping researchers determine which genes are behind a coral’s, an alga’s or a bacterium’s fragility or resilience. Stephen Palumbi of Stanford University, for example, is identifying coral genes that produce the “heat-shock” proteins which repair damage caused by too much warmth.

十年前,对100万个 DNA 碱基对测序需要花费三四千美金。如今,花费同样的钱可以对1000亿个 DNA碱基对进行测序。这些大量的数据帮助研究人员确定了脆弱或适应能力强的珊瑚,海藻和细菌拥有哪种基因。比如,斯坦福大学的 Stephen Palumbi辨认出能够修复因高温造成损伤的“热休克”蛋白的珊瑚基因。

This raises the question of whether the genomes of coral, algae and bacteria might be edited for greater robustness. According to Dr Voolstra, more than ten laboratories around the world are trying to do so. His own team has successfully inserted genetic material into about 30 larvae of a coral called Acropora millepora. Editing corals’ heat thresholds in this way is, he reckons, about five years away.

由此引发了一个问题:是否可以通过编辑珊瑚,海藻和细菌等的基因组而使它们变得更加健壮。根据Voolstra博士的说法,全球十多个实验室正在进行此类尝试。他的团队已经成功把遗传物质添加到大约三十个鹿角大珊瑚的幼虫中。他估计,用这种方法改变珊瑚耐热性大概还需要五年。

Whether they are created by selective breeding or genetic engineering, supercorals, the thinking goes, would not need to be placed on reefs in astronomical numbers. If they are truly fit for purpose they will necessarily multiply more rapidly than wild varieties do in the warmer, more acidic seas of the future. That thought, however, does not please everybody. Some object in principle to the idea of releasing human-modified creatures into the wild, or feel that amelioration of this sort is a distraction from the business of reducing carbon-dioxide emissions. Others have pragmatic concerns—that corals bred to survive warming seas might suffer handicapping trade-offs. So regulators have been cautious. The Great Barrier Reef Marine Park Authority, for example, will probably require that the hybrid organisms AIMS hopes to test in the open reef are removed before they begin spawning.

不论这些超级珊瑚到底是通过选择性繁殖还是基因工程创造出来的,人们至少不用放很多数量在珊瑚礁上。如果它们真的能达到目的,他们繁殖速度肯定会比野生品种在未来更温暖、酸性更强的海洋中的繁殖速度更快。然而,这种想法并不能让所有人满意。一些人反对这个想法,认为应该将人类改造的生物是放到野外,或者认为这种改良只是对原来的减少二氧化碳排放工作的干扰。另外一些人有着更务实的担心,这些珊瑚种被培育用于生存在更温暖的水域可能会被用作不良的勾当。因此,监管者一直很谨慎。比如说,大堡礁海洋公园管理局可能会要求澳大利亚海洋科学研究所在开放的礁石上对混合生物体进行测试,并在它们大量繁殖前清除掉。

According to Dr Voolstra, however, the recent big losses of coral are tipping attitudes towards action—including genetic engineering—if the collapse continues. As to the best course of that action, America’s National Oceanic and Atmospheric Administration (NOAA) is paying for a study, begun last month by the country’s National Academy of Sciences, to look into the risks and benefits of the various possible approaches. In the view of Jennifer Koss, who runs NOAA’s reef programme, the alternative, of doing nothing, is the equivalent of “ just throwing our hands up in the air and saying, ‘OK, we’re prepared now not to have coral’.” For the world’s oceans, that loss would be catastrophic.

然而,根据Voolstra博士的说法,最近珊瑚礁的巨大损失正在影响公众对行动的态度,如果损失继续扩大,那也将影响到基因工程。最具代表性的要属国家科学院对各种研究方法开展的利弊深入分析,该项研究由美国国家海洋和气候管理局(NOAA)赞助,自上月起立项。NOAA珊瑚礁项目的负责人Jennifer Koss认为,另一种选择就是什么都不做,就相当于对天两手一摊说,“好吧,我们已经做好没有珊瑚的准备了”。对于世界上的海洋来说,这损失将是灾难性的。

翻译组:

Li Xia, 女, HR, 经济学人发烧友

Xingyi,男,小硕,经济学人爱好者

Jane,女,卫生民工,经济学人爱好者

Minjia,女,广告策划,经济学人读者

Grace , 女,市场公关,经济学人爱好者

Helga,女,笔译民工,经济学人爱好者

Joel,男,数据分析,科技类外刊爱好者

校核组:

Vambie,女,互联网民工,经济学人爱好者

Damon ,男,钢管搬运工,经济学人打酱油狂人

3

观点 |评论|思考

本次观点为LitFish独家奉献

LitFish ,女,药物制剂,Nature追随者

LitFish怕水,尤其是海平面以下,但是很喜欢海底。海底总是有着神秘的自由的生物。海底鱼群以珊瑚为背景才显得更自由,因为珊瑚虽然是动物,生长在海底,有触手,能抓虫子吃,但是没有自由的脚。所以珊瑚是植物之上,动物之下。正是因为它不能移动,不能迁徙,所以无法逃避人类对大自然的改变而导致珊瑚的灭顶之灾。2004年由联合国环境规划署提供的数据表明,全世界的珊瑚礁有11%遭灭顶之灾,16%已不能发挥生态功能,60%正面临严重威胁。除了环境的变化,还有人为的损害。上个世纪90年代,在经济野蛮发展的时期,经常有听闻炸珊瑚这三个字眼,人们为了经济收入成片成片的毁掉珊瑚群。

在朋友家有见过非常美丽的红珊瑚(看到这里,小编觉得你朋友家估计是无敌海景房,应该是在还中间的那种),确实很美,但其实它已经是没有生命活力的尸体(看到这里,小编才发现所谓的红珊瑚可能是那种一般去海边都会买的五元一串的红珊瑚手串)。珊瑚所面临的危险,其实何尝不是人类即将面对的呢?珊瑚在地球存活了25亿年而即将被在地球生活1W年不到的人类所灭绝。

小编(此小编非彼小编,我是Litfish)在码这篇感想的时候,认识到并没有办法解决珊瑚的生死存亡问题,因为人类须要的是生活不是生存,生活则意味着要动用大自然其他生物的利益,人类开采矿产而获取热量产生废物,人类合成新的材料而消耗更多的化合物,产生更多的废物,因为质量守恒定律这些废物最终还是存在于地球。虽然那些废物在这一刻,你看不见了,但是它最终都会对生态产生影响,只是你看不到而已。倒是有一个办法解决日益严峻的环境问题,那就是人类回到畜牧打猎的远古时期。因为那个时候求的是生存,无欲无求。

4

愿景

打造
独立思考 | 国际视野 | 英文学习

小组

小编理工男,建筑底层民工,经济学人铁粉,和小伙伴(经济学人小群不超过8个人)看经济学人到现在已经将近700多天。现有一经济学人大群,如果您也有兴趣,可加入我们学习小组,群规甚严,请三思后而入群,WeChat : foxwulihua

长按关注个人公众号
英文部分转自《经济学人》,非商业用途,仅限于小组学习,如有任何翻译错误,请大家留言更正,谢谢!
(0)

相关推荐