初等数学解题方法

1

初等数学解题方法

学会运用数形结合思想,数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

学会运用函数与方程思想,从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。

直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

2

数学解题方法一

直接法:根据题干所给条 件,直接经过计算、推理或证明,得出正确答案。图解法:根据题干提供信息,绘出图形,从而得出正确的答案。首先,应按题干的要求填空,如有时填空题对 结论有一些附加条件,如用具体数字作答,精确到……等,有些考生对此不加注意,而出现失误,这是很可惜的。其次,若题干没有附加条件,则按具体情况与常规 解答。应认真分析题目的隐含条件。

总之,填空题与选择题一样,因为它不要求写出解题过程,直接写出最后结果。打好基础,强化训练,提高解题能力,才能既准 又快解题。另一方面,加强对填空题的分析研究,掌握其特点及解题方法,减少失误。

填空题主要题型:一是定量型填空题,二是定性型填空题,前者主要考查计算 能力的计算题,同时也考查考生对题目中所涉及到数学公式掌握的熟练程度,后者考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。当然 这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度只不过是考查有所侧重而已。选择填空题与大题有所不同,只求正确结论,不用遵循步骤,因此应试 时可走捷径,运用一些答题技巧。

3

数学解题方法二

几何:对于几何的复习,考生要重视对基础知识的理解,尤其是几何教材中的概念、公理、定理要能理解、会运用。从近几年中考命题的趋势看,几何多是以基础题为主,试题源于教材又异于教材,依据教材又高于教材。综合题的原型基本是教材中的例题或习题,是教材中题目的引申、变形和组合。所以几何复习应以教材为主,集中精力把几何教材中的每一个题目认认真真地做一遍,并进行归纳分析。

不要一味搞“题海战术”,整天埋头做大量的课外习题,其效果并不明显。中考几何题除了着重考查基础知识外,还十分重视数学思想方法的考查,如数形结合、方程的思想、分类讨论的思想、转化思想等。在复习时对每一种方法的实质及它所适用的题型,包括解题步骤应掌握。例如,在证明圆周角定理和弦切角定理时都有分类讨论的思想,它可以在考生的思想中建立全面考虑问题的意识;

又如数形结合的思想,近几年中考“压轴题”都与此有关,解这类数学题时有的考生往往要么只注意到代数知识,要么只注意到几何知识,不会把它们相互转化。为了更好地考查学生的创新能力和数学素养,近几年中考逐渐增加了运用数学知识解决实际问题的试题数量和开放探索性试题。考生要关注身边的社会实际、社会热点,复习时有针对性地多做这方面。

4

数学解题方法三

学生害怕“压轴题”,恐怕与“题海战术”有关。中考前,盲目地多做难题是有害的。从外省市中考卷或从前几年各区模拟考卷中选题时,特别要留意它是否超出今年中考的考查范围。有关部门已明确,拓展ii的教学内容不属于今年中考的范围,如代数中的“一元二次方程的根与系数的关系”、“用‘两根式’和‘顶点式’来求二次函数的解析式”、“二次函数的应用”等,几何中“圆的切线的判定和性质”、“四点共圆的性质和判定”等,因此这些内容不可能作为构造压轴题的“作料”。

有经验的老师常常把压轴题分解为若干个“小综合题”,并进行剪裁与组合,或把外省市的某些较难的“填空题”,升格为“简答题”,把“熟题”变式为“陌生题”,让学生练习,花的时间虽不多,但能取得较好的效果。我认为:综合题的解题能力不能靠一时一日的“拔苗助长”而要靠日积月累的培养和训练。在总复习阶段,对大部分学生而言,放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。

为了应对中考压轴题,教师可以根据实际,为学生精选一二十道,但不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,结果必然是得不偿失。事实证明:有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上,因此在最后总复习阶段,还是应当把功夫花在夯实基础、总结归纳上,老师要帮助学生打通思路,掌握方法,指导他们灵活运用知识。

以上是初等数学解题方法的方法的相关建议,希望对您有所帮助。

以上是广州朴新教育整理的初等数学解题方法全部内容,更多精选文章请访问数学学习网专栏。

(0)

相关推荐