填空题讲解40:四边形有关的几何综合问题

如图,在一张矩形纸片ABCD中,AB=4,BC=8,点EF分别在ADBC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
EC平分∠DCH
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=√5.
以上结论中,你认为正确的有     .(填序号)
参考答案:
解:∵FHCGEHCF都是矩形ABCD的对边ADBC的一部分,
FHCGEHCF
∴四边形CFHE是平行四边形,
由翻折的性质得,CF=FH
∴四边形CFHE是菱形,(故①正确);
∴∠BCH=∠ECH
∴只有∠DCE=30°时EC平分∠DCH,(故②错误);
H与点A重合时,设BF=x,则AF=FC=8﹣x
RtABF中,AB2+BF2=AF2
即42+x2=(8﹣x2
解得x=3,
G与点D重合时,CF=CD=4,
BF=4,
∴线段BF的取值范围为3≤BF≤4,(故③正确);
过点FFMADM
ME=(8﹣3)﹣3=2,
由勾股定理得,
EF=2√5,(故④正确);
综上所述,结论正确的有①③④共3个,
故答案为①③④.
考点分析:
四边形综合题.
题干分析:
①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;
②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;
③点H与点A重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出③正确;
④过点FFMADM,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.
(0)

相关推荐

  • 每个人都在中考复习,如何才能跑得更快?解对题才是重点

    平行四边形有关的知识定理和题型是初中几何重要的学习内容,也是中考数学的重点内容.纵观近几年全国各地的中考数学试题,你就会发现平行四边形有关的试题因其内容的特殊性,一直深受命题老师的青睐,成为中考的必考 ...

  • 四边形“大家族”——菱形

    [1]平行四边形的判定 两组对边分别平行的四边形是平行四边形. 两组对边分别相等的四边形是平行四边形. 两条对角线互相平分的四边形是平行四边形. 两组对角分别相等的四边形是平行四边形 一组对边平行且相 ...

  • 填空题讲解86:二次函数有关的综合题

    抛物线y=﹣4x²/9+8x/3+2与y轴交于点A,顶点为B.点P是x轴上的一个动点,当点P的坐标是      时,|PA﹣PB|取得最小值. 参考答案: 考点分析: 二次函数的性质:轴对称﹣最短路线 ...

  • 填空题讲解72:几何变换有关的综合问题

    如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的周长是     . 参考答案: 考点分析: 旋转的性质:等腰直角三角形:正 ...

  • 填空题讲解70:三角形有关的综合问题

    在△ABC中,D,E分別是AB,AC的中点,AC=10.F是DE上一点.连接AF,CF,DF=1,若∠AFC=90°,则BC的长度为   . 参考答案: 考点分析: 三角形中位线定理. 题干分析: 如 ...

  • 填空题讲解66:几何变换有关的综合问题分析

    如图,△COD是△AOB绕点O顺时针方向旋转30°后所得的图形,点C恰好在AB上,∠AOD=90°. (1)∠B的度数是     : (2)若AO=2√3,CD与OB交于点E,则BE=      . ...

  • 填空题讲解62:二次函数有关的综合问题

    如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2/2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是      . 参 ...

  • 填空题讲解58:圆有关的综合问题

    如图,⊙O的半径为2,点A.C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=√3,则图中阴影部分的面积为    . 参考答案: 考点分析: 扇形面积的计算. 题干分析: 通 ...

  • 填空题讲解57:二次函数有关的综合题

    如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为"果圆",已知点A.B.C.D分别是"果圆"与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2 ...

  • 填空题讲解43:二次函数有关的综合问题

    如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为"果圆",已知点A.B.C.D分别是"果圆"与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2 ...

  • 填空题讲解39:二次函数有关的综合问题分析

    二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表 下列结论:①ac<0:②当x>1时,y的值随x值的增大而减小. ③当x=2时,y=5:④3是方程ax2 ...