【每周CV论文推荐】 初学GAN必须要读的文章
欢迎来到《每周CV论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。
GAN作为当前最有前途,也最烧钱的方向之一,值得每一个从事CV领域的同学跟进,今天给大家介绍入行GAN需要读的文章。
作者&编辑 | 言有三
1 GAN
首先当然是要读GAN之父Goodfellow的文章[2]了,引用量已经超过了10000+,不过因为GAN模型同时包含了生成学习和判别学习模型,也推荐大家读一读文[1]对两者的对比。
文章引用量:10000+
推荐指数:✦✦✦✦✦
[1] Ng A Y, Jordan M I. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes[C]//Advances in neural information processing systems. 2002: 841-848.
[2] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in neural information processing systems. 2014: 2672-2680.
2 DCGAN
作为第一个全卷积GAN,简单,有效,对机器的要求不高,谁都可以上手在短时期来完成图像生成任务,领略GAN的神奇之处。
文章引用量:4000+
推荐指数:✦✦✦✦✦
[3] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.
3 CGAN和InfoGAN
GAN虽然是无监督模型,DCGAN固然也好用,但是加了条件控制之后才能做更多的事情。CGAN是第一个条件GAN模型,能够控制生成数字的细节。Infogan是无监督的cgan,通过隐变量约束c与生成数据之间的关系,它们是后面出现的更加强大的条件GAN的基础。
文章引用量:2000+
推荐指数:✦✦✦✦✦
[4] Mirza M, Osindero S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.
[5] Chen X, Duan Y, Houthooft R, et al. Infogan: Interpretable representation learning by information maximizing generative adversarial nets[C]//Advances in neural information processing systems. 2016: 2172-2180.
4 级连GAN
原始的GAN生成图的分辨率太小,无法实用,为了更加稳定地生成更加高清的图,LAPGAN[6]/StackedGAN[7]借鉴了图像中的金字塔算法,各自提出级连的GAN结构。NVIDIA则在Progressive GAN中首次将图像生成到了1024分辨率,效果惊人。
文章引用量:1000+
推荐指数:✦✦✦✦✧
[6] Denton E L, Chintala S, Fergus R. Deep generative image models using a laplacian pyramid of adversarial networks[C]//Advances in neural information processing systems. 2015: 1486-1494.
[7] Huang X, Li Y, Poursaeed O, et al. Stacked generative adversarial networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [8] Karras T, Aila T, Laine S, et al. Progressive growing of gans for improved quality, stability, and variation[J]. arXiv preprint arXiv:1710.10196, 2017.
5 如何获取文章与交流
找到有三AI开源项目即可获取。
https://github.com/longpeng2008/yousan.ai
文章细节众多,阅读交流在有三AI知识星球中进行,感兴趣可以加入。
总结
一入GAN门深似海,期望大家能够在GAN中有所收获,遇到困难坚持住,就是GAN。
有三AI夏季划
有三AI夏季划进行中,欢迎了解并加入,系统性成长为中级CV算法工程师。
转载文章请后台联系
侵权必究