隔空“玩”物不再科幻!科学家研发新型可穿戴设备,未来有望用于智能假肢
如今,由加州大学伯克利分校的工程师们开发出的一种新型可穿戴设备或许可以实现这些场景。该设备通过将可穿戴生物传感器与人工智能(AI)相结合,可以根据设备佩戴者前臂的电信号模式,识别出他计划做出的手势。研究人员表示,该设备有望用于控制假肢,并且可与各种类型的电子设备进行交互。
相关研究以“A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition”为题,于 12 月 21 日在线发表在 Nature Electronics 上。
(来源:Nature Electronics)
让科幻场景成为现实
虽然引入机器学习模型进行本地信号处理的系统具有许多优势,但同样面临着多种问题,在低功耗嵌入式处理器中,所使用的机器学模型通常需要事先进行离线训练,如果训练达不到预期效果,模型的分类精度就会降低,导致性能欠佳或用户体验不佳等问题。
为了解决当前可穿戴生物传感设备面临的技术壁垒,Moin 等人通过检测人体皮肤表面肌电图(surface electromyography,sEMG),研发了可穿戴的高密度 sEMG 生物传感系统。该可穿戴系统总重量为 26g,也就是一块表的重量,佩戴十分方便;系统所使用的电池为 3.7V、240mAh 的锂离子电池,连续手势识别续航时间长达 6 小时。
图 | sEMG 可穿戴生物传感系统。a. 位于前臂上的设备;b. 丝网印刷过程的图解;c. 定制设计的 16*4 电极阵列;d. 小型八层 PCB 电路板;e. 构成可穿戴系统的主要组件的框架图。(来源:Nature Electronics)
竖起你的大拇指
Moin 表示:“当你想让手部肌肉收缩时,你的大脑会通过颈部和肩部的神经元向手臂和手部的肌肉纤维发送电信号。从本质上讲,臂带中的电极所检测到的就是这个电信号。它并不是那么精确,从某种意义上说,我们无法精确地指出到底是哪些纤维被触发了,但由于电极的分布密度较高,它仍然可以学习识别某些模式。”
论文通讯作者之一、加州大学伯克利分校的电机工程和计算机科学系杰出教授 Jan Rabaey 表示:“当亚马逊或苹果公司创建他们的算法时,他们会在云端运行一堆软件来创建模型,然后将模型下载到设备上。但是,在设备的使用过程中,往往会被所输入的特定模型所困。如今,我们实现了一个在设备本身完成学习的过程,而且它的速度极快,你只需要执行一次,它就会开始做这项工作。你做的次数越多,设备的性能就会变得越好。它在不断学习,这也是人类的工作方式。”
Rabaey 表示,该设备尚未准备好商用,可能还需要进行一些调整。
“这些技术大多数已经存在于其他地方,但是该设备的独特之处在于,它将生物传感、信号处理和解释以及 AI 集成到一个系统中,而且该系统具有尺寸小、设计灵活、低功率等优点。”
编审:寇建超
排版:易澍
参考资料:
https://www.nature.com/articles/s41928-020-00510-8
https://techxplore.com/news/2020-12-high-five-thumbs-up-device-gesture.html
https://www.youtube.com/watch?v=z3D9WBfUKsQ&feature=emb_logo&ab_channel=UCBerkeley