论文推荐|知识图推理的强化学习方法(EMNLP’17)
论文题目
DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning
作者:
Wenhan Xiong ;
Thien Hoang ;
William Yang Wang;
推荐理由:
这篇文章首次将强化学习的思想引入到知识图谱的推理过程中,企图找到多跳(h,r,?)问题推理的最佳路径。文章首先将所有的节点进行embedding,然后训练一个简单的policy network,输入(当前节点的embedding,到目标节点的embedding之间的差),输出所有要采取的relation的分布(即policy)。
训练方法比较粗糙,使用基本的policy gradient,每次的路径找到目标给一个奖励,找不到-1。但是可以给基于认知的推理很多启发。
摘要:
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and ef- ficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.1
学术头条已建立微信交流群,想进群的同学请加学术君微信:AMiner308,记得备注:名字+单位/学校噢!