【每周论文推荐】 初入深度学习CV领域必读的几篇文章

很多朋友都希望我们开通论文推荐和阅读板块,那就开吧,此专栏名为《每周论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。

网络模型作为深度学习的几大核心问题之一,今天就给初入深度学习CV领域的朋友推荐一些必读的文章,相信读完这些文章之后,大家对这个主题会有更深刻的体会。

作者&编辑 | 言有三

1 视觉机制的研究

这篇文章是对视觉机制的重要研究,由现代视觉科学之父,诺贝尔生理学与医学奖获得者,加拿大神经生理学家 David Hunter Hubel 和瑞典神经科学家 Torsten Nils Wiesel所写,是CNN的启蒙。

文章引用量:13000+

推荐指数:✦✦✦✧✧

[1] Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of physiology, 1962, 160(1): 106-154.

2 第一个图像CNN网络

1980 年日本 NHK 技术研究所的研究员福島邦彦提出了Neocognitron网络,这是第一个真正意义上的多层级联神经网络,与当前的卷积神经网络结构非常相似,可以认为是卷积神经网络的起源

文章引用量:3000+

推荐指数:✦✦✦✦✧

[2] Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological cybernetics, 1980, 36(4): 193-202.

3 LeNet5

从1989年开始纽约大学的Yann LeCun等人开始认真研究卷积神经网络,并提出了LeNets网络系列,迭代了近10年,从LeNet1直到大家最为熟悉的LeNet5诞生。这是卷积神经网络真正商用化的开始,也是反向传播理论大放异彩的开始,可称之为卷积神经网络的Hello World

文章引用量:19000+

推荐指数:✦✦✦✦✦

[3] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

4 深度学习启蒙

2006年Geoffrey Everest Hinton等人在《Science》杂志上发表文章《reducing the dimensionality of data with neural networks》,提出了参数逐层初始化的DBN网络的训练,一般被认为是“深度学习”的启蒙

文章引用量:9000+

推荐指数:✦✦✦✦✧

[4] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507.

5 深度学习里程碑

2012年,在图像领域中具有里程碑意义的ImageNet竞赛中,Geoffrey Hinton的学生Alex Krizhevsky提出了 AlexNet,凭借若干优秀的工程技巧一举夺魁远超对手,意味着深度学习强势诞生

文章引用量:43000+

推荐指数:✦✦✦✦✦

[5] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.

6 CNN可视化

2013年Hinton的学生Matthew D. Zeiler和Rob Fergus 在论文“Visualizing andUnderstanding Convolutional Networks”中提出了zfnet,他们利用反卷积技术对CNN进行了可视化,详细探讨了CNN的分层抽象学习能力

文章引用量:6000+

推荐指数:✦✦✦✦✧

[6] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//European conference on computer vision. Springer, Cham, 2014: 818-833.

7 CNN重要基准模型

2014年牛津大学视觉组在论文“very deep convolutional networks for large-scale image recognition”中提出了VGGNet,分别在ImageNet的定位和分类任务中取得第一名和第二名,以简单的工程技巧成为了至今仍然被广泛使用的baseline

文章引用量:24000+

推荐指数:✦✦✦✦✦

[7] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.

8 1*1卷积

这只是一个将普通卷积核半径变为1的卷积方式,却影响了之后几乎所有的模型,将这个1×1的特殊卷积用于通道的降维和升维,已经成为模型设计不可缺少的组件。

文章引用量:4000+

推荐指数:✦✦✦✦✧

[8] Lin M, Chen Q, Yan S. Network in network[J]. arXiv preprint arXiv:1312.4400, 2013.

9 Inception机制

在VGG网络不能再通过加深得到进一步性能突破的时候,Inception模型(又名GoogLeNet)使用了拥有不同感受野并行的多分支Inception结构,进一步加深了网络深度并成为当年的基准模型。

文章引用量:14000+

推荐指数:✦✦✦✦✧

[9] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.

(0)

相关推荐