TF之LSTM:利用多层LSTM算法对MNIST手写数字识别数据集进行多分类

TF之LSTM:利用多层LSTM算法对MNIST手写数字识别数据集进行多分类


设计思路

更新……

实现代码



# -*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
from tensorflow.contrib import rnn
from tensorflow.examples.tutorials.mnist import input_data

#根据电脑情况设置 GPU
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)

# 1、定义数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
print(mnist.train.images.shape)

#2、定义模型超参数
lr = 1e-3
# batch_size = 128
batch_size = tf.placeholder(tf.int32)  #采用占位符的方式,因为在训练和测试的时候要用不同的batch_size。注意类型必须为 tf.int32
input_size = 28      # 每个时刻的输入特征是28维的,就是每个时刻输入一行,一行有 28 个像素
timestep_size = 28   # 时序持续长度为28,即每做一次预测,需要先输入28行
hidden_size = 256    # 每个隐含层的节点数
layer_num = 2        # LSTM layer 的层数
class_num = 10       # 最后输出分类类别数量,如果是回归预测的话应该是 1

_X = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, class_num])
keep_prob = tf.placeholder(tf.float32)

#3、LSTM模型的搭建、训练、测试
#3.1、LSTM模型的搭建
X = tf.reshape(_X, [-1, 28, 28])  #RNN 的输入shape = (batch_size, timestep_size, input_size),把784个点的字符信息还原成 28 * 28 的图片
lstm_cell = rnn.BasicLSTMCell(num_units=hidden_size, forget_bias=1.0, state_is_tuple=True)      #定义一层 LSTM_cell,只需要说明 hidden_size, 它会自动匹配输入的 X 的维度
lstm_cell = rnn.DropoutWrapper(cell=lstm_cell, input_keep_prob=1.0, output_keep_prob=keep_prob) #添加 dropout layer, 一般只设置 output_keep_prob
mlstm_cell = rnn.MultiRNNCell([lstm_cell] * layer_num, state_is_tuple=True)  #调用 MultiRNNCell来实现多层 LSTM
init_state = mlstm_cell.zero_state(batch_size, dtype=tf.float32)             #用全零来初始化state

#3.2、LSTM模型的运行:构建好的网络运行起来
#T1、调用 dynamic_rnn()法
# ** 当 time_major==False 时, outputs.shape = [batch_size, timestep_size, hidden_size],所以,可以取 h_state = outputs[:, -1, :] 作为最后输出
# ** state.shape = [layer_num, 2, batch_size, hidden_size],或者,可以取 h_state = state[-1][1] 作为最后输出,最后输出维度是 [batch_size, hidden_size]
# outputs, state = tf.nn.dynamic_rnn(mlstm_cell, inputs=X, initial_state=init_state, time_major=False)
# h_state = outputs[:, -1, :]  # 或者 h_state = state[-1][1]

#T2、自定义LSTM迭代按时间步展开计算:为了更好的理解 LSTM 工作原理把T1的函数自己来实现
#(1)、可以采用RNNCell的 __call__()函数,来实现LSTM按时间步迭代。
outputs = list()
state = init_state
with tf.variable_scope('RNN'):
    for timestep in range(timestep_size):
        if timestep > 0:
            tf.get_variable_scope().reuse_variables()
        (cell_output, state) = mlstm_cell(X[:, timestep, :], state)   # 这里的state保存了每一层 LSTM 的状态
        outputs.append(cell_output)
h_state = outputs[-1]

#3.3、LSTM模型的训练
# 定义 softmax 的连接权重矩阵和偏置:上面 LSTM 部分的输出会是一个 [hidden_size] 的tensor,我们要分类的话,还需要接一个 softmax 层
# out_W = tf.placeholder(tf.float32, [hidden_size, class_num], name='out_Weights')
# out_bias = tf.placeholder(tf.float32, [class_num], name='out_bias')
W = tf.Variable(tf.truncated_normal([hidden_size, class_num], stddev=0.1), dtype=tf.float32)
bias = tf.Variable(tf.constant(0.1,shape=[class_num]), dtype=tf.float32)
y_pre = tf.nn.softmax(tf.matmul(h_state, W) + bias)

#定义损失和评估函数
cross_entropy = -tf.reduce_mean(y * tf.log(y_pre))
train_op = tf.train.AdamOptimizer(lr).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

sess.run(tf.global_variables_initializer())
for i in range(2000):
    _batch_size = 128
    batch = mnist.train.next_batch(_batch_size)
    if (i+1)%200 == 0:
        train_accuracy = sess.run(accuracy, feed_dict={
            _X:batch[0], y: batch[1], keep_prob: 1.0, batch_size: _batch_size})
        # 已经迭代完成的 epoch 数: mnist.train.epochs_completed
        print("Iter%d, step %d, training accuracy %g" % ( mnist.train.epochs_completed, (i+1), train_accuracy))
    sess.run(train_op, feed_dict={_X: batch[0], y: batch[1], keep_prob: 0.5, batch_size: _batch_size})

# 计算测试数据的准确率
print("test accuracy %g"% sess.run(accuracy, feed_dict={_X: mnist.test.images, y: mnist.test.labels,
                                                        keep_prob: 1.0, batch_size:mnist.test.images.shape[0]}))

参考文章:https://www.cnblogs.com/mfryf/p/7903958.html

(0)

相关推荐