【HETA】管壳式换热器的强化传热技术

管壳式换热器一般应用在一些大型设备上,材料一般以碳钢、不锈钢和铜为主。今天我们就来看一看管壳式换热器的强化传热技术是如何做的,希望能给我们制冷空调换热器技术一定的启发和借鉴。

管壳式换热器的传热强化研究包括管程和壳程两侧的传热强化研究。通过强化传热管元件与优化壳程结构实现。

一:强化传热管元件

改变传热面的形状和在传热面上或传热流路径内设置各种形状的插入物。改变传热面的形状有多种,其中用于强化管程传热的有:螺旋槽纹管、横纹管、螺纹管、缩放管、旋流管和螺旋扁管等。另外,也可采用扰流元件,在管内装入麻花铁,螺旋圈或金属丝片等填加物,亦可增强湍动,且有破坏层流底层的作用。

1、螺旋槽管 

螺旋槽纹管管壁是由光管挤压而成。其管内传热强化主要:一是螺旋槽近壁处流动的限制作用,使管内流体做整体螺旋运动来产生局部二次流动;二是螺旋槽所导致的形体阻力,产生逆向压力梯度使边界层分离。螺旋槽纹管具有双面强化传热的作用,适用于对流、沸腾和冷凝等工况,抗污垢性能高于光管,传热性能较光管提高2~4倍。

2、横纹槽管

横纹管的强化机理为:

当管内流体流经横向环肋时,管壁附近形成轴向游涡,增加了边界层的扰动,使边界层分离,有利于热量的传递。当游涡将要消失时流体又经过下一个横向环肋,因此不断产生涡流,保持了稳定的强化作用。

3、缩放管

换热管表面的竹节状结构,使管内介质流动时,产生收缩和放大效应,使介质湍动程度增加,提高了管内介质的热交换能力,而且管内靠近管壁的介质沿管的轴向流动时,其方向和速度在波节处产生突变,形成局部湍流,使管壁处流体的滞留底层减薄,热阻降低,也使管外介质的传热能力提高。

4、低螺纹翅片管

普通换热管经轧制在其外表面形成螺纹翅片的一种高效换热管型。其强化作用是在管外。对介质的强化作用一方面体现在螺纹翅片增加了换热面积;另一方面是由于壳程介质流经螺纹管表面时,表面螺纹翅片对层流边层产生分割作用,减薄了边界层的厚度。

当用于蒸发时,可以增加单位表面上气泡形成的数量,提高沸腾传热能力;

当用于冷凝时,螺纹翅片十分有利于管下端冷凝液的滴落,使液膜减薄,热阻减少,提高冷凝传热效率。

5、螺旋扁管

螺旋扁管(Twisted tube)换热器是由美国Brown公司推出的。螺旋扁管的结构特点是管子的任一截面均为一长圆。

螺旋扁管的强化机理:由于管子的独特结构,使管程与壳程同时处于螺旋流动,促进了湍流程度。此换热器比常规换热器总传热系数高40%,而压力降则几乎相等。此换热器可用于气—气、液—液以及气—液换热过程。

6、菱形翅片管

菱形翅片管为带有周向非连续三维翅片的高效传热管,其传热强化性能优于带周向连续翅片的螺纹翅片管。当用于冷凝强化传热时,由于其三维翅片的特殊结构造成翅片表面液膜的表面张力分布不均(根部大,顶部小),液膜被拉向根部,使三维翅片表面的液膜厚度大幅度的减薄,热阻减小,使汽态介质和管外壁的换热能力增强,从而提高换热效果。

7、波纹管

波纹管是以普通光滑换热管为基管,采用无切削滚扎工艺使管内外表面金属塑性变形而成,双侧带有波纹的管型。

波纹管管内被挤出凸肋,从而改变了管内壁滞流层的流动状态,减少了流体传热热阻,增强了传热效果。

8、表面多孔管(烧结、热喷涂、电镀等)

采用含有造孔剂的金属粉末,在普通光管的表面制备一层多孔涂层。该涂层在沸腾传热时,涂层中的大量微孔变成为汽泡形成的核心,由于微孔内的汽泡处于四周受热状态,气泡核迅速膨大充满内腔,持续受热使气泡内压力快速增大,促使气泡从管表面细缝中急速喷出。气泡喷出时带有较大的冲刷力量,并产生一定的局部负压,使周围较低温度液体涌入微孔内,形成持续不断的沸腾。

9、T形翅片管

T形翅片管是由光管经过滚轧加工成型的一种高效换热管。其结构特点是在管外表面形成一系列螺旋环状T形隧道。管外介质受热时在隧道中形成一系列的气泡核,由于在隧道腔内处于四周受热状态,气泡核迅速膨大充满内腔,持续受热使气泡内压力快速增大,促使气泡从管表面细缝中急速喷出。气泡喷出时带有较大的冲刷力量,并产生一定的局部负压,使周围较低温度液体涌入T形隧道,形成持续不断的沸腾。

10、其他形式换热管

二:管壳强化传热

壳程强化传热的途径主要有两种:

一是改变壳程挡板或管支撑物的形式,以减少或消除壳程流动与传热的滞留死区,使传热面积得到充分利用。如折流杆换热器、空心环换热器、螺旋折流板换热器等等。

二是改变管子外形或在管外加翅片,即通过管子形状或表面性质的改造来强化传热,以提高换热器效率。如槽纹管、翅片管、表面多孔管、钉头管等等。

对于第二种情况前面有介绍,在这里主要向大家介绍第一种方法。

1、不同形式的折流板换热器

2、折流杆式换热器

20世纪70年代初,美国菲利浦公司为了解决天然气流动振动问题,而将管壳式换热器中的折流板改成杆式支撑结构,开发出了折流杆换热器。研究表明,这种换热器不但能防振,而且还提高了传热系数。此种换热器广泛应用于单相沸腾和冷凝的各种工况。其总传热系数比普通折流板换热器提高40~60%,且抗振性能好。把折流杆支撑结构与螺旋槽管、横纹槽管、底翅片管、T形翅片管等强化传热管组合,形成复合强化传热技术。

折流杆换热器是目前应用最广的新型管壳式换热器。

3、空心环式换热器

空心环管壳式换热器是我国于20世纪90年代发明的一种新型管壳式换热器。空心环是由直径较小的钢管截成短节,均匀地分布于换热管管间的同一截面上,呈线性接触,在紧固装置螺栓力的作用下,使管束相对紧密固定。空心环作为支撑形式,已成功地应用于小型氮肥厂。据报道,在相同条件下,其传热面积虽比单弓形支承可减少35%,传热速率则可增加38%,泵功率可减少75%。

4、螺旋折流板换热器

螺旋折流板换热器是最新发展起来的一种管壳式换热器,是由美国ABB公司提出的。与常规折流板相互平行布置方式不同,它的折流板相互形成一种特殊的螺旋形结构,每个折流板与壳程流体的流动方向成一定的角度,使壳程流体做螺旋运动,能减少管板与壳体之间易结垢的死角,从而提高了换热效率。在气—水换热的情况下,传递相同热量时,该换热器可减少30%~40%的传热面积,节省材料20%~30%。此换热器尤适宜于处理含固体颗粒、粉尘和泥沙等流体。

5、扭曲管换热器

(0)

相关推荐

  • 船舶各种常用换热器知识原理:16个动画为你展示

    今天一起来了解学习下套管式换热器.浮头式换热器.沉浸蛇管换热器.板式换热器.夹套换热器.U型管换热器.列管式换热器.喷淋式换热器等12大换热器的原理.构成! 1.套管式换热器 套管式换热器↑↑↑  原 ...

  • 换热器的强化传热技术和传热计算

    换热器的传热一直是我们关注的重点技术之一,今天我们就一起来探讨下换热器的强化传热技术和传热计算. 换热器的强化传热  1.强化传热技术  换热器的强化传热就是力求使换热器在单位时间内,单位传热面积传递 ...

  • 这些换热器强化传热技术你都选对了吗?

    换热器被广泛应用于商业.工业领域中.换热器强化传热技术的应用能够节能环保,降低运营成本. 今天,小编就带大家扒一扒换热器的强化传热技术. 一.换热器的分类及工作原理 先来三张动图看一下换热器的工作原理 ...

  • 管壳式换热器(三):流体本身物性优化以及复合强化传热

           换热器作为工业生产中进行热交换操作的通用设备,广泛应用于化工.电力.冶金.航空.动力.食品等工业部门中,特别在石油炼制及化学加工装置中占有重要地位.管壳式换热器的强化传热主要有以下方式: ...

  • 管壳式换热器(二):壳程强化传热

    管壳式换热器的强化传热主要有以下方式:管程强化传热.壳程强化传热.流体本身物性优化以及复合强化传热等.本文继续介绍壳程强化传热的内容 壳程强化传热可以通过改变换热管外形,在换热管外壁加工翅片形成扩展表 ...

  • 管壳式换热器(一):管程传热强化

             近几十年来,由于对节约能源和环境保护的重视,换热器的需求量不断增大,针对换热器强化传热技术的研究也得到广泛关注.在过程工业中,管壳式换热器使用最多,具有结构简单.加工制造容易.耐压性 ...

  • 【技术】铜管管壳式换热器制造前的2项必要试验

         铜管换热器制造过程中的难点在于换热管与管板的连接,由于换热管材质的原因,若要在制造过程中确保其有良好的密封性能,并满足压力泄漏试验要求,应先经过前期的试验模拟,因此,为了确保换热管与管板的连 ...

  • 【技术】一种管壳式换热器综合性能的优化方法!

         换热器是一种对能量进行交换的设备,广泛应用于化工.能源.石油.动力及冶金等工业部门,它既可以让工程设备正常地运行,又在动力消耗.投资等方面占有非常大的比重.因此,提升换热器的综合性能,是提升 ...

  • 管壳式换热器与传热机理,满满的干货!

    管壳式换热器又称列管式换热器.是以封闭在壳体中管束的壁面作为传热面的间壁式换热器.这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温.高压下使用,是目前应用最广的类型. ...

  • 【行业观察】西门子利用强化学习技术实时优化老化的燃气轮机性能

    导读:2021年3月23日,西门子能源公司高级副总裁Mirko Düsel表示,尽管燃气轮机经久耐用,但随着时间的流逝,其性能会降低,从而导致功率损失,这一事实无处掩饰.目前传统的方法就是对燃气轮机进 ...